

Total Sample Evaporation of 1 ng SRM U350

Precision and Accuracy by Static Faraday Cup Multicollection

Dietmar Tuttas, Thermo Fisher Scientific, Bremen, Germany

Key Words

TRITON, Atomic Weight %, Nuclear Application, Static Mode, Total Evaporation, TIMS, Uranium

Analysts are aiming to analyze smaller and smaller sample amounts while not compromising the precision and accuracy of the measured isotope ratios. It is even more challenging in case of real samples with varying sample concentrations and different matrices.

This is in particular true for nuclear applications, including safeguards, environmental control and reprocessing of nuclear fuels, where official regulations have to be fulfilled. There is a requirement for precise and accurate analysis of uranium and plutonium samples in the low nanogram range (sub-nano Curie activity).

One of the fundamental problems in Thermal Ionization Mass Spectrometry (TIMS) is the fact of time dependent isotopic fractionation that occurs during the evaporation of the sample. As samples are heated and ionized in a TI source, the lighter isotopes are evaporated more rapidly and the measured isotope compositions will generally change from light to heavy during the course of analysis.

The analysis of elements that cannot be normalized to an internal isotope system requires a highly reproducible loading technique and ionization conditions and/or external correction procedures to achieve reproducible results of high precision.

One solution to this problem has been the development of "Total Sample Evaporation".¹

During total sample evaporation, a sample is continuously and completely evaporated from the filament. During the run, the filament current is continuously adjusted in order to follow a predefined and reproducible evaporation profile.

At the same time, all isotopes of interest are collected simultaneously during the entire period of evaporation.

The final results are represented by the averaged isotopic mean values at the end of the analysis, when no measurable amount of sample is left on the filament.

Schematic of the Multi-Collector Configuration

Run #	RATIO			ATOM %			
	$^{234}\text{U}/^{238}\text{U}$	$^{235}\text{U}/^{238}\text{U}$	$^{236}\text{U}/^{238}\text{U}$	^{234}U	^{235}U	^{236}U	^{238}U
1	0.0041415	0.5465275	0.0025227	0.2666	35.1874	0.1624	64.3836
2	0.0039345	0.5465337	0.0026784	0.2533	35.1888	0.1725	64.3854
3	0.0039067	0.5461105	0.0027085	0.2516	35.1711	0.1744	64.4029
4	0.0038790	0.5466193	0.0025322	0.2498	35.1969	0.1630	64.3902
5	0.0039102	0.5466133	0.0024973	0.2518	35.1968	0.1608	64.3906
6	0.0040146	0.5469418	0.0024464	0.2584	35.2093	0.1575	64.3748
7	0.0038969	0.5461063	0.0024487	0.2510	35.1770	0.1577	64.4142
8	0.0036091	0.5468670	0.0025562	0.2324	35.2129	0.1646	64.3902
9	0.0039858	0.5466242	0.0024713	0.2566	35.1961	0.1591	64.3881
10	0.0039341	0.5464046	0.0027161	0.2533	35.1826	0.1749	64.3892
11	0.0038804	0.5461045	0.0026687	0.2499	35.1723	0.1719	64.4059
MEAN	0.0039175	0.5464957	0.0025679	0.2522	35.1901	0.1653	64.3923
SD	0.0001278	0.0002909	0.0001053	0.0082	0.0139	0.0068	0.0112
RSD %	3.3	0.053	4.1	3.3	0.039	4.1	0.017
NBS Certified Standard Values:				0.2498 (6)	35.1900 (350)	0.1673 (5)	64.3930 (360)

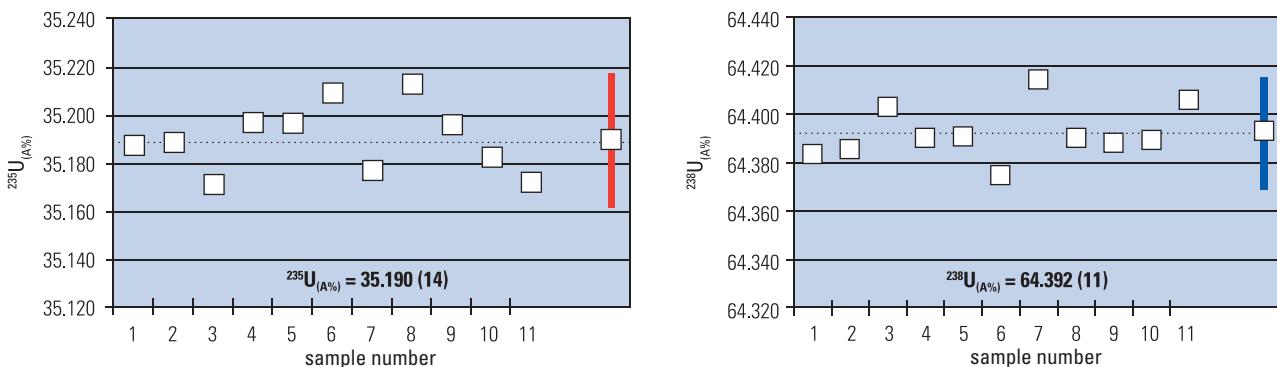


Figure 2. U isotope abundances in SRM U350. 11 runs and their means are plotted, together with the 2SD uncertainties on the means. NBS certified values are shown for reference as dotted lines.

Reference

1. Richter, S. Kühn, H. Aregbe, Y. et al. 2011. *J. Anal. At. Spectrom.*, 26, 550-564.

thermoscientific.com/TritonPlus

©2014 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Africa +43 1 333 50 34 0
Australia +61 3 9757 4300
Austria +43 810 282 206
Belgium +32 53 73 42 41
Canada +1 800 530 8447
China 800 810 5118 (free call domestic)
 400 650 5118

Denmark +45 70 23 62 60
Europe-Other +43 1 333 50 34 0
Finland +358 9 3291 0200
France +33 1 60 92 48 00
Germany +49 6103 408 1014
India +91 22 6742 9494
Italy +39 02 950 591

Japan +81 45 453 9100
Latin America +1 561 688 8700
Middle East +43 1 333 50 34 0
Netherlands +31 76 579 55 55
New Zealand +64 9 980 6700
Norway +46 8 556 468 00
Russia/CIS +43 1 333 50 34 0

Thermo Fisher Scientific (Bremen)
 GmbH Management System
 Registered to ISO 9001:2008

Singapore +65 6289 1190
Spain +34 914 845 965
Sweden +46 8 556 468 00
Switzerland +41 61 716 77 00
UK +44 1442 233555
USA +1 800 532 4752

AN30017_E 01/14S

Thermo
 SCIENTIFIC

Part of Thermo Fisher Scientific