The Evolution of 8260

AGENDA

1 Overview of 8260

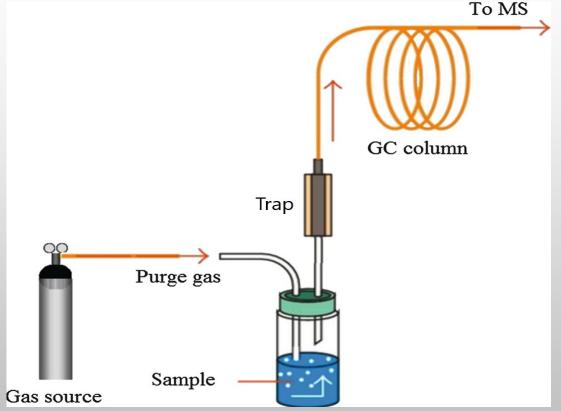
- 2 Automated Sampling and Purge/Trap Advancements
- **3 GC/MS Advancements**
- 4 Utilizing Advancements for Industry Needs

QUICK OVERVIEW OF EPA METHOD 8260

Volatile Organic Compounds (VOCs) by Gas Chromatography-Mass Spectrometry

- -- Applicable to nearly all types of samples regardless of water content
- -- Able to analyze over 100 different compounds
- -- Various techniques for sample introduction
 - Direct Injection
 - Cryofocusing
 - Headspace
 - Purge/Trap* (EPA Method 5030 for water and 5035 for soils)

*Will focus on Purge and Trap technique for this presentation


Overview of 8260 continued

Definition of Purge/Trap:

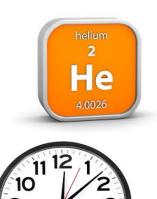
• An analytical technique designed to efficiently extract VOCs from a matrix and concentrate them for transfer onto a GC analytical column without sacrificing peak shape, recovery, or accuracy.

How is that extraction done?

- An inert gas is bubbled through a portion of the aqueous sample at ambient temperature and the volatile components are efficiently transferred from the aqueous phase to the vapor phase. The vapor is swept through a sorbent column (trap) where the volatile components are adsorbed. After purging is completed, the sorbent column is heated and backflushed with inert gas to desorb the components onto a gas chromatographic column.
- For soils: An aliquot of the extract prepared in Method 5035 Graph is combined with organic free reagent water in the purging chamber. It is then analyzed by purge-and-trap GC or GC/MS following the normal aqueous method.

--Simple schematic of Purge and Trap

Overview of 8260 Continued


PACELABS.COM

Issues with 8260 by Purge and Trap:

• Water

• Poor performers/Problem compounds

• Inert Gas

• Time

Shoulde

HOW DO WE OVERCOME MANY OF THE ISSUES THAT HAVE PLAGUED METHOD 8260?

Looking at Improvements in chemical testing equipment Technology



ENVIRONMENT. LIFE. SERVICE.

Automated Sampling and Purge/Trap Advancements

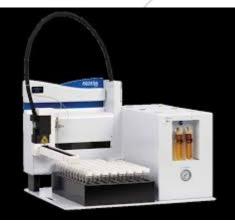
Automated Sampling has come a long way...

Tekmar ALS 2016

Varian/OI Archon

Tekmar Aquatek 100

Tekmar Atomx


Tekmar SolaTEK 72


EST Centurion

Tekmar Aquatek 70

Tekmar Aquatek LVA

Automated Sampling Advancements

- No longer have to hand load samples into sparge tubes
- In-line "Ink Jet" style Internal Standard and Surrogate addition
- Sample capacity has increased.
- Dual sample type automated samplers can run water or soil samples (purge in vial).
- In-line sample dilution capabilities.
- In-line sample pH recording
- Time saved on sample transfer with latest software that easily communicates between sampler and GC/MS
- More efficiently engineered automated samplers
- Can use nitrogen as a carrier gas.
- Scheduling and keeping track of sample runs has been made easier

From the Sampler to the Concentrator...

Tekmar 3000

OI Eclipse 4550

Tekmar 3100

OI Eclipse 4650

OI Eclipse 4750

EST Encon

EST Evolution

EST Evolution 2

PACELABS.COM

• Moisture Management

Removing water from the sampling process is one of the biggest keys to getting good chromatography.

--Concentrator moisture trapping systems have evolved over time to increase water removal during the desorbing process that sends the sample to the GC.

--Sorbent trap material has also become better at retaining problem compounds and keeping samples moisture free.

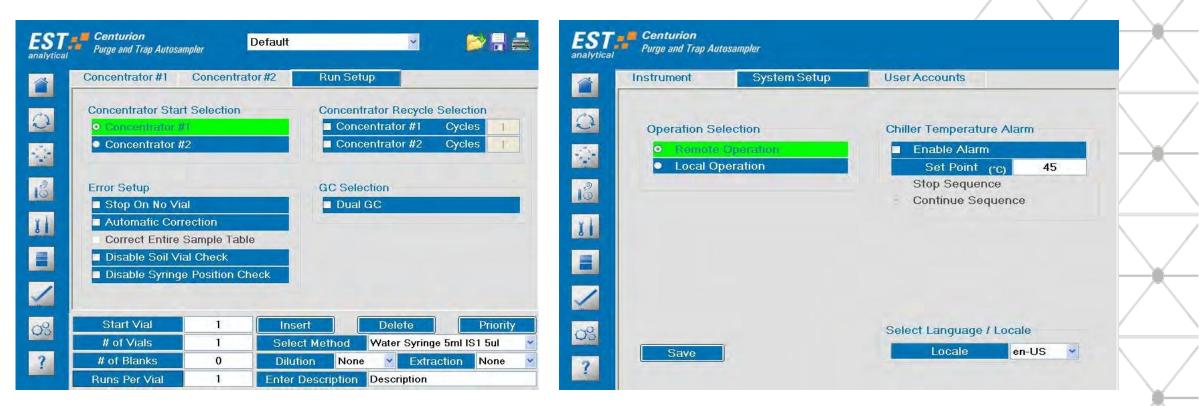
--Heated zone control has become more advanced with upgraded software capable for controlling and monitoring all areas of the concentrator that require high temps to keep moisture out of the concentrating process.

--Bake program capabilities that allow time and bake flows to be set to help reduce carryover and keep the system moisture free.

• FLOW CONTROL AND THE USE OF NITROGEN AS A PURGE GAS

--Flow control is no longer manual and is controlled electronically, allowing for leak checking and trouble shooting through software that monitors flow.

--Concentrators have settings to use Nitrogen as a purging/carrier gas. This allows labs to save on Helium usage.


--Flow control has allowed for quicker more efficient purge times. Higher purge flow equals lesser purge time. Decreases run time and increases sample capacity. Studies have shown that increasing flow and reducing purge time has minimal effect on compound recoveries.

Purge Flows and Times	Avg. Curve Quadratic Regression	Avg. Curve RF	PIR	Avg. Lower PIR (prediction interval of results (0.5µg/L)	Avg. % Recovery (20μg/L)	Avg. Precision, %RSD (20μg/L)	$\begin{array}{c} 40 \text{ml/min for 11 min - black} \\ 65 \text{ml/min for 6.5 min - blue} \\ 100 \text{ml/min for 4 min - orange} \\ 65 \text{ml/min for 4 min - green} \end{array}$
40ml/min for 11min	1.000	1.110	110.23	81.65	103.57	4.03	$\begin{bmatrix} 200000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 1000000 \\ 100000 \\ 10000 \\ $
65ml/min for 6.5 min	0.999	1.220	116.53	83.31	95.11	4.66	2000000- 1000000-
100ml/min for 4 min	0.999	1.273	105.73	68.57	95.85	5.22	10 500 1 102 D' 400 1 10
65ml/min for 4 min	0.999	1.001	112.79	76.89	105.27	2.82	

https://nemc.us/docs/2018/presentations/pdf/Friday-Topics%20in%20Drinking%20Water-28.4-Jurek.pdf

https://nemc.us/docs/2018/presentations/pdf/Friday-Topics%20in%20Drinking%20Water-28.4-Jurek.pdf

• Updated Software

EST concentrator software

Other upgrades

- Heated Purge
 - --Allows sample to remain same temperature regardless of room temperature. Temperature fluctuations during purge step can affect recovery of compounds.
- Foam Detection
 - --A sensor in the sparge tube will detect if a sample begins to foam and fill the sparge tube which can be detrimental to a concentrator. Once detected, it shuts the concentrator and autosampler down.
- Hot Water Rinse
 - --Concentrators are now capable of rinsing the sparge tube with hot water from a reservoir that is included on the concentrator. This helps reduce carry over and keep the sparge tube clean.
- Smaller and better engineered designs

--Newer concentrators are smaller, which takes up less bench space, and even stackable (Lumin). Sample pathways have also been reduced, making troubleshooting and maintenance much easier.

ENVIRONMENT. LIFE. SERVICE.

GC/MS ADVANCEMENTS

Desorbed to the GC....

HP/Agilent 4890

Agilent 6850

HP/Agilent 5890

Agilent 6890

25-75-85*

PACELABS.COM

Agilent 7890

Agilent Intuvo 9000

PACELABS.COM

Advancements in GC Technology

- From touchpads to touchscreens
- Electronic Pressure Control (EPC)
- Compact Design

Method

1.713 psi

ŧ

Diagnostics

딦

ΞĒ

Maintenance

6.499 mL/min

Col 3

Settings.

2.2 pA

FID 250.00 °C

2.7 pA

FID 250.00 °C

(P)(-)

Advancements in GC technology

Networking Capabilities

• Software upgrades

Injection port design

Advancements in GC Consumables

Injection Port Liners

--Liners have become more inert and proprietary coatings have helped with compound recovery and chromatography

Columns

--Advancements in column production have allowed for micro capillary sizes and widths. Capillary column coatings have also been optimized specifically for method 8260.

--Shorter length columns have decreased GC run times.

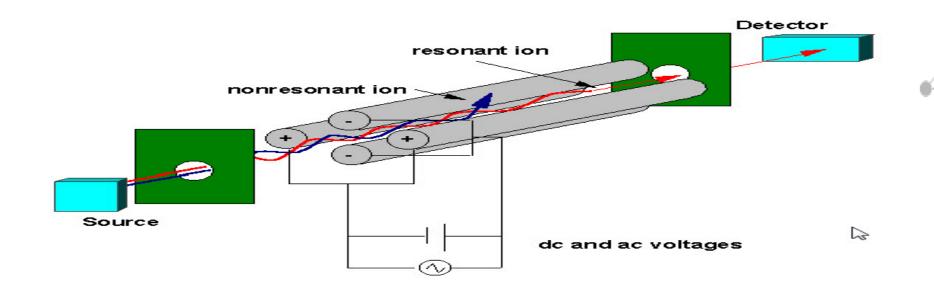
Separated by the GC Analyzed by the Mass Spec

HP/Agilent 5970

Agilent 5973

HP/Agilent 5971

Agilent 5975


HP/Agilent 5972

Agilent 5977

PACELABS.COM

In the last few decades, improvements in mass spectrometry (MS) have continued to improve drastically. Changes in quantitative accuracy, MS resolution, and data processing abilities have helped push the environmental testing industry to new heights.

Source Improvements

 \odot Stainless Steel

--Source will work for method 8260, but advancement in source types have had great effects in testing efficiency for the method.

○ Inert Ion Source

--For high sensitivity and accurate quantitation the sample path must be highly inert including the detector surfaces. This source offers added inertness.

○ Extractor El Source

--Has an extractor lens in place of a draw out plate made of inert material, providing enhanced response for active compounds and late eluters, and maximum, ultra-trace level sensitivity.

Draw Out Lens Size for the source

Draw out lenses now come in a variety of sizes

--3, 6, and 9 mm are available for use in most sources

--The 6 mm draw out lens has shown to be a more robust option for method 8260.

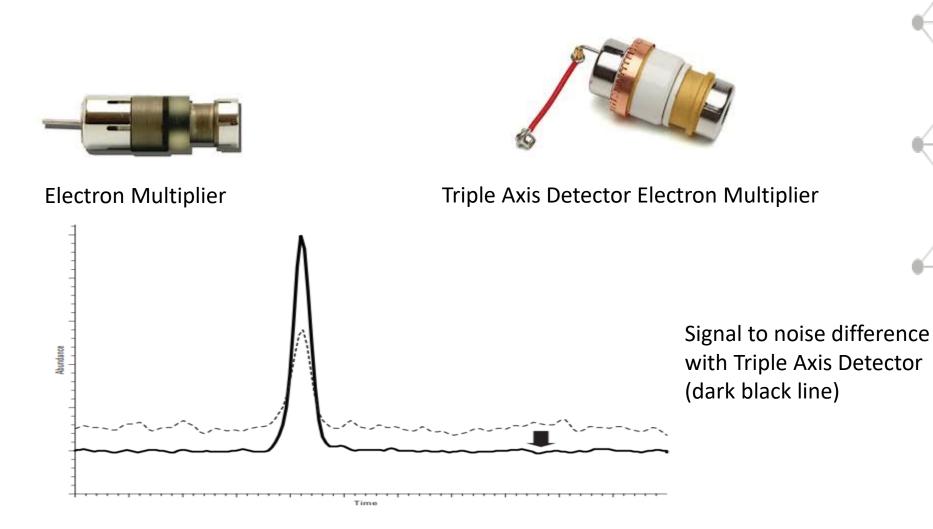
--The 6 mm lens showed better %RSD recoveries in calibration curves for method 8260, especially on poor responding compounds.

Draw out lens size study results

USEPA Method 8260b				L. L	JSEPA Method 826	60		USEPA Method 8260				
Compound	6mm Draw-out 3mm Draw-out 6mm Draw-out			6mm Draw-out 3mm Draw-out		6mm Draw-out					ľ	
	DB-VRX	lens DB-VRX	lens DB-624	Compound	lens	lens	lens	Compound	6mm Draw-out		6mm Draw-out	
	Column	Column	Column		DB-VRX	DB-VRX	DB-624	Compound	lens	lens	lens	
pentafluorobenzene (IS)					Column	Column	Column		DB-VRX	DB-VRX	DD 001 0 1	
fluorobenzene(IS)	N/A	N/A	N/A	methyl methacrylate	6.16	8.49	11.94		Column	Column	DB-624 Column	
dichlorodifluoromethane	10.38	9.08	10.21	chloroacetonitrile	N/A	N/A	N/A		Column	Coldmin		
chloromethane	11.19	9.24	3.66	n-propyl acetate	9.57	9.84	11.43	1,4-dichlorobenzene-d4 (IS)				
vinyl chloride	7.14	10.65	6.21	2-cleve	5.94	8.71	6.73	1.4-dichlorobenzene	9.01	8.63	8.98	
bromomethane	12.38	11.47	11.91	cis-1,3-dichloropropene	5.65	11.21	6.76		1			1
chloroethane	4.49	10.24	11.96	toluene-d8 (surr)	4.29	10.01	4.84	1,2-dichlorobenzene-d4 (surr)	N/A	N/A	N/A	/
trichlorofluoromethane	7.18	7.51	4.71	toluene	5.60	4.06	3.14	n-butylbenzene	5.38	5.75	12.44	
diethyl ether	5.75	3.13	4.00	2-nitropropane	9.22	12.13	10.45	n-butyibenzene	5.30	5.75	12.44	
1,1-dichloroethene carbon disulfide	5.83	10.43	6.41	tetrachloroethene	11.70	7.30	8.56	1.2-dichlorobenzene	11.49	7.10	6.63	1
1,1,2-trichlorofluoroethane	9.76	13.01	6.19	1,1-dichloro-2-propanone	N/A	N/A	N/A		11			I
iodomethane	5.89	9.48	3.91	4-methyl 2-pentanone	9.99	11.52	9.91	hexachloroethane	N/A	N/A	N/A	
allyl chloride	11.44	10.74	9.40	1,1,2-trichloroethane	7.24	8.28	5.69	1.2-dibromo-3-chloropropane	7.62	14.53	12.46	6.
methylene chloride	9.32		10.69	trans-1,3-dichloropropene	N/A	N/A	N/A		1			N
acetone	6.18 7.60	8.35 12.59	4.74 8.30	ethyl methacrylate	7.95	8.96	7.19	hexachlorobutadiene	7.60	9.34	13.51	
trans-1,2-dichloroethene	9.05	4.35	6.37	dibromochloromethane	9.74	11.21	8.76	1.2.4-trichlorobenzene	8.49	3.12	12.03	
methyl acetate	9.86	4.35	12.14	1,3-dichloropropane	5.47	6.04	4.60					1
MTBE	3.11	5.35	6.20	1.2-dibromoethane	7.94	11.41	6.94	naphthalene	3.76	6.56	9.83	1
TBA	8.43	10.58	5.97	n-butyl acetate	9.14	11.21	10.35	1.2.3-trichlorobenzene	6.26	9.28	11.54	/
diisopropyl ether	8.49	4.24	10.44	2-hexanone	3.32	7.47	11.41	1,2,0-0101000012010	0.20	9.20	11.04	
chloroprene	8.81	9.20	7.04	chlorobenzene-d5 (IS)	0.02					24.0		/
1,1-dichloroethane	7.12	4.44	3.95	chlorobenzene	6.07	6.79	3.51	Method Optimization	App Note.docx	; 24-Mar-09	\sim	
acrylonitrile	8.91	10.19	10.30	ethylbenzene	6.18	8.37	4.33	Teledyne Tekmar			¥	
vinyl acetate	6.32	8.07	8.85	1,1,1,2-tetrachloroethane	9.76	10.21	3.98				一一一天	
ETBE	6.63	3.81	3.61	m&p xylene	10.21	9.04	6.09					h., .
cis-1,2-dichloroethene	7.26	3.52	5.03	ortho xylene	9.00	5.27	2.47					1000
2,2-dichloropropane	8.31	9.95	7.06		10.36	4.55	6.28					
bromochloromethane	7.43	5.02	9.09	styrene	6.38	4.55	6.28 11.22			/	\sim	
methacrylonitrile	N/A	N/A	N/A	bromoform							- William	
chloroform	8.44	4.13	5.13	isopropylbenzene	8.62	6.50	6.91 6.57				-	
carbon tetrachloride	9.32	12.62	9.86	n-amyl acetate	11.68	9.87						
1,1,1-trichloroethane	6.99	8.66	2.10	BFB (surr)	10.25	14.49	12.26					
THE	11.93	9.35	10.44	n-propylbenzene	8.44	8.65	10.93					1
1-chlorobutane	N/A	N/A	N/A	1,2,3-trichloropropane	N/A	N/A	N/A				\sim $^{\prime}$	
dibromofluoromethane (surr)	10.58	4.12	4.44	trans-1,4-dichloro-2-butene	9.66	9.78	0.999				¥.	
methyl acrylate	7.69	11.40	11.77	nitrobenzene	11.94	0.995	0.997				一一一天	
1,1-dichloropropene	10.37	9.14	6.38	bromobenzene	9.18	8.31	3.79					6
2-butanone (MEK)	9.38	8.82	12.56	1,1,2,2-tetrachloroethane	9.13	9.59	6.26					1000
benzene	5.04	7.25	3.14	1,3,5-trimethylbenzene	8.58	6.44	6.32					
propionitrile	4.75	5.82	9.12	pentachloroethane	N/A	N/A	N/A					
tert amyl methyl ether (TAME) 1.2-dichloroethane	4.80	6.02 6.64	4.58 5.47	2-chlorotoluene	9.02	5.15	2.63					
1,2-dichloroethane isobutyl alcohol	7.88	6.64	5.47 9.97	cis-1,4-dichloro-2-butene	9.11	13.98	7.82				-	
isopropyl acetate	6.1U 7.83	9.80	8.32	4-chlorotoluene	7.67	10.03	6.76					1
trichloroethene	8.72	9.80	8.36	tertbutylbenzene	10.04	4.35	6.55				1000	
1.4-difluorobenzene (IS)	0.12	9.44	0.30	1,2,4-trimethylbenzene	6.89	9.44	5.18				744	/
dibromomethane	3.74	6.48	10.01	sec-butylbenzene	5.54	7.03	11.46				\sim /	/
1,2-dichloropropane	9.94	8.65	4.49	p-isopropyltoluene	9.39	7.44	10.24				<u> </u>	
bromodichloromethane	8.82	11.72	4.49	1.3-dichlorobenzene	10.93	6.68	8.31			PACELAB	S COM	
a on our on or other lane	0.02	11.12	7.32	1,5 aromorowortzono							3.UUM 📃	

Electron Multiplier Advancements

• Triple Axis Detector Electron Multiplier

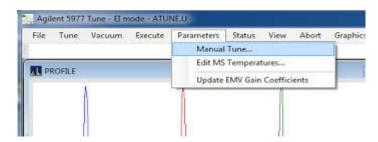

--At a given operating gain, the new detector provides higher signal intensity by collecting more ions emerging from the quadrupole.

--Although signal is enhanced, neutral noise is substantially reduced through the off-axis design.

--Detector lifetime is also increased under proper operation.

- Provides many benefits during analysis
 - --Enhanced detection limits
 - --Increases in compound relative response ratios
 - --Calibration curves with greater slopes
 - --Lower tuning voltages, increasing lifetime of multiplier

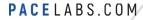
Electron Multiplier Advancements


PACELABS.COM

Other Upgrades

 $\odot\,$ Diffusion Pumps to Turbo Pumps

○ Software upgrades


 Newer mass spec analyzers can handle higher temperatures, which is helpful in resolution and removal of contaminants.

Other upgrades

GC/MS transfer line

- Source cleaning procedures and materials
- Magnetic Rough Pumps
- Mass production

WHAT DO ALL THESE **TECHNOLOGICAL ADVANCEMENTS** MEAN FOR METHOD 8260?

- Improvements in automated sampling, sample concentrators, and GC/MS throughout
 - the years has led regulators to lower reporting limits on a number compounds.

--Most labs now calibrate at sub part per billion (ppb) levels for all compounds.

0.2000000	0.4000000	1.0000	4.0000	10.0000	20.0000	I I		Coefficients		%RSD	16
Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve	b	ml	m2	or R^2	1
	100 0000										1-
											1.
= ================			 =======[[' (=====[:				.=[========	-i\\
0.27093	0.42045	0.46761	0.44523	0.46255	0.47028	i i					
0.45890	0.48366	0.46541	i i	Í		AVRG		0.43834		14.88665	5 j /
-								11-			-1
				0.96004						1	
0.92749	1.04313	0.94385				AVRG		0.91062		11.57215	5
1.29894	1.38111	1.05260	1.24400	1.34885	1.35273						1
1.35098	1.48946	1.34995				AVRG		1.31874		9.04889	₽İ∖
1 1 16018	1 28432	0 95761	1 08160	1 17312	1 13742			!!-			-
				1.1/512				1.14667		8.21038	8i/
						[]		-			-1
				0.44689							I
	0.48652	0.43959	 			AVRG		0.42965		9.87762	21-
				0.44395				i i		i	÷,
0.41776	0.46616	0.43224	I I	I		AVRG		0.41512		9.84614	4 🔪
-	Level 1 50.0000 Level 7 0.27093 0.45890 0.45890 0.45890 0.92749 1.29894 1.35098 1.35098 1.16018 1.13738 0.38288 0.43748 0.35676	Level 1 Level 2 50.0000 100.0000 Level 7 Level 8 0.27093 0.42045 0.45890 0.48366 0.45890 0.48366 0.92749 1.04313 0.92749 1.04313 1.29894 1.38111 1.35098 1.48946 1.16018 1.28432 1.13738 1.25082 0.38288 0.47202 0.43748 0.48652 0.35676 0.45069	Level 1 Level 2 Level 3 50.0000 100.0000 250.0000 Level 7 Level 8 Level 9 	Level 1 Level 2 Level 3 Level 4 50.0000 100.0000 250.0000 1 Level 7 Level 8 Level 9 1 0.27093 0.42045 0.46761 0.44523 0.45890 0.48366 0.46541 1 0.67816 0.97567 0.82536 0.89181 0.92749 1.04313 0.94385 1 1.29894 1.38111 1.05260 1.24400 1.35098 1.48946 1.34995 1 1.16018 1.28432 0.95761 1.08160 1.13738 1.25082 1.13759 1 0.38288 0.47202 0.35320 0.40377 0.43748 0.48652 0.43959 1 0.35676 0.45069 0.34814 0.39564	Level 1 Level 2 Level 3 Level 4 Level 5 50.0000 100.0000 250.0000 1 Level 7 Level 8 Level 9 1 0.27093 0.42045 0.46761 0.44523 0.46255 0.45890 0.48366 0.46541 1 1 0.67816 0.97567 0.82536 0.89181 0.96004 0.92749 1.04313 0.94385 1 1 1.29894 1.38111 1.05260 1.24400 1.34885 1.35098 1.48946 1.34995 1 1 1.16018 1.28432 0.95761 1.08160 1.17312 1.13738 1.25082 1.13759 1 1 0.38288 0.47202 0.35320 0.40377 0.44689 0.43748 0.48652 0.43959 1 1	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 50.0000 100.0000 250.0000 1 1 Level 7 Level 8 Level 9 1 1 0.27093 0.42045 0.46761 0.44523 0.46255 0.47028 0.45890 0.48366 0.46541 1 1 1 0.67816 0.97567 0.82536 0.89181 0.96004 0.95010 0.92749 1.04313 0.94385 1 1 1 1.29894 1.38111 1.05260 1.24400 1.34885 1.35273 1.35098 1.48946 1.34995 1 1 1.35273 1.16018 1.28432 0.95761 1.08160 1.17312 1.13742 1.13738 1.25082 1.13759 1 1 1.13742 1.13738 0.4852 0.43959 1 1 1.13742 0.38288 0.47202 0.353201 0.403771 0.44689 0.44448 0.43748 0.48652 0.43959 1 1 1	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve 50.0000 100.0000 250.0000 1 1 1 1 Level 7 Level 8 Level 9 1 1 1 0.27093 0.42045 0.46761 0.44523 0.46255 0.47028 1 0.45890 0.48366 0.46541 1 AVRG 1 0.67816 0.97567 0.82536 0.89181 0.96004 0.95010 1 0.92749 1.04313 0.94385 1 AVRG 1 1.29894 1.38111 1.05260 1.24400 1.34885 1.35273 1 1.35098 1.48946 1.34995 1 AVRG 1 1.6018 1.28432 0.95761 1.08160 1.17312 1.13742 1 1.16018 1.28432 0.95761 1.08160 1.17312 1.13742 1 1.36288 0.47202 0.35320 0.40377 0.44689 0.44448 0.43748 0.48652 0.43959 1 AV	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b 50.0000 100.0000 250.0000 1 1 1 1 Level 7 Level 8 Level 9 1 1 1 0.27093 0.42045 0.46761 0.44523 0.46255 0.47028 1 0.48366 0.48366 0.46541 1 IAVRG 1 IAVRG 0.67816 0.97567 0.82536 0.89181 0.96004 0.95010 IAVRG 1.298944 1.38111 1.05260 1.24400 1.34885 1.35273 IAVRG 1.1298944 1.38111 1.05260 1.24400 1.34885 1.35273 IAVRG 1.13098 1.48946 1.34995 IAVRG IAVRG IAVRG 1.16018 1.28432 0.95761 1.08160 1.17312 1.13742 IAVRG I.13738 1.25082 1.13759 IAVRG IAVRG IAVRG I.13738 0.47202 0.35320 0.40377 0.44689 0.44448 IAVRG	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml 50.0000 100.0000 250.0000 1 1 1 1 Level 7 Level 8 Level 9 1 1 1 0.27093 0.42045 0.46761 0.44523 0.46255 0.47028 1 1 0.45890 0.48366 0.46541 1 AVRG 0.438341	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2 50.0000 100.0000 250.0000 1 1 1 1 Level 7 Level 8 Level 9 1 1 1 0.27093 0.42045 0.46761 0.44523 0.46255 0.47028 1 1 0.45890 0.48366 0.46541 1 IAVRG 0.43834	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Curve b ml m2 or R^2 50.0000 100.0000 250.0000 1

Optimizing run times by using all advancements in technology

- Taking advantage of software to make sure sampler and concentrator are operating in sync, decreasing time between sampling
- Shortening purge times by optimizing purge flow
- Decreasing desorb time to minimize the amount of moisture going into the GC
- Using advancements in consumables to optimize recovery and continually keep system free of contaminants
- Exploiting column advancements to decrease run times and optimize compound separation

Optimizing run times by using all advancements in technology

• Average run time throughout network between 14-20 minutes per sample for 8260 analysis. Ideally 80-100 samples per instrument per day.

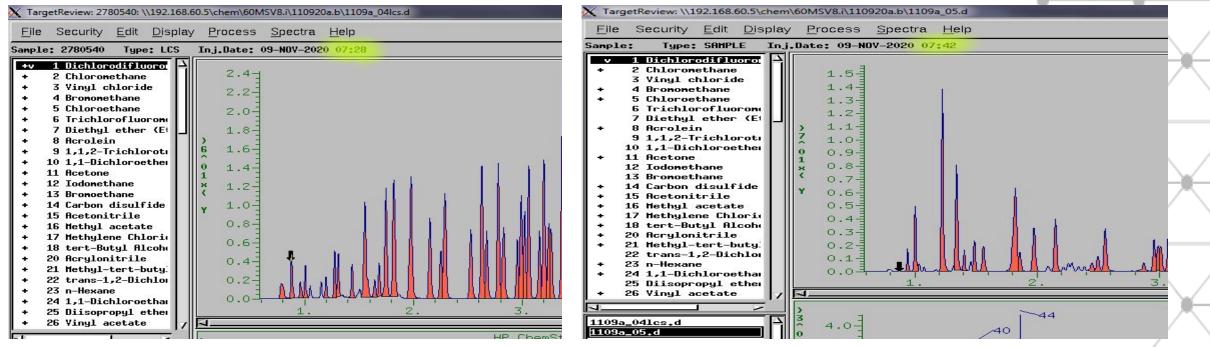


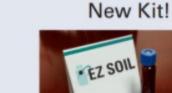
Image of concurrent sequence runs showing a 14-minute sample to sample time.

Helium Gas Usage Reduction

- Applying automated sampler and concentrator Nitrogen gas options for carrier and purge gas use
- Optimizing methods to reduce flow of Helium during sample runs
- Employing the Gas Saver option on sample runs to reduce Helium usage
- Updated EPC's reduce Helium loss, optimize flows and help keep instrumentation clean from contamination.

Pace Analytical offers "EZ Soil"

- By leveraging the technical advancements now available for chemical testing equipment specific to method 8260 Pace Analytical has created a method to eliminate running low level soils that directly purge in vial.
- Why is this significant?


--Increases productivity, both in the lab and in the field

--Reduces turn around time (hold time from 2 days to 14 days)

--Improve data quality

--Reduces

PACELABS.COM

Evolution of 8260 Conclusion

Using the advances made in testing equipment, instrumentation and consumables we have been able to enhance method 8260 to be more efficient, provide better data, and reduce our footprint. As the industry pushes towards more production and lower compound report limits, we have been able to leverage the progress made on testing equipment to increase sample loads and look lower than we ever have before. The evolution of 8260 has been a direct response of increasingly changing technology and the environmental testing world's needs.

Questions? Comments?

US EPA Method 524.2: Measurement of Purgeable Organic Compounds in Drinking Water by Agilent 8860/5977B GC/MSD

Bruce D. Quimby, Ph.D. Senior GC/MS Applications Scientist Agilent Technologies Wilmington, Delaware

DE.44140.5720486111

1

Purge and Trap vs. Headspace Analysis for VOCs

EPA 524.2 requires the use of purge and trap

METHOD 524.2

MEASUREMENT OF PURGEABLE ORGANIC COMPOUNDS IN WATER BY CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY

1. SCOPE AND APPLICATION

- 1.1 This is a general purpose method for the identification and simultaneous measurement of purgeable volatile organic compounds in surface water, ground water, and drinking water in any stage of treatment (1,2). The method is applicable to a wide range of organic compounds, including the four trihalomethane disinfection by-products, that have sufficiently high volatility and low water solubility to be removed from water samples with purge and trap procedures The following compounds can be determined by this method.
- 6.2 PURGE AND TRAP SYSTEM The purge and trap system consists of three separate pieces of equipment: purging device, trap, and desorber. Systems are commercially available from several sources that meet all of the following specifications.

US EPA Method 524.2 VOCs in Water

EPA method 524.2 provides procedures and requirements for the quantitation of VOCs in surface water, ground water, and drinking water by GC/MS

Four specific groups of VOCs

- Trihalomethanes (THMs)
- Gases
- Aromatics
- Products of dehydrohalogenation

Dichlorodifluoromethane	Methyl acrylate	Toluene	1,4-Dichlorobut-2-ene
Chloromethane	Bromochloromethane	trans-1,3-Dichloropropene	Propylbenzene
Chloroethene	Methylacrylonitrile	Ethyl methacrylate	2-Chlorotoluene
Bromomethane	Tetrahydrofuran	1,1,2-Trichloroethane	Mesitylene (1,3,5- Trimethylbenzene)
Ethyl chloride	Trichloromethane	Tetrachloroethylene	tert-Butylbenzene
Trichloromonofluoromethane	1,1,1-Trichloroethane	1,3-Dichloropropane	1,2,4-Trimethylbenzene
Ethyl ether	1-Chlorobutane	2-Hexanone	1-Methylpropyl benzene
1,1-Dichloroethene	Carbon Tetrachloride	Dibromochloromethane	1,3-Dichlorobenzene
Acetone	1,1-Dichloropropene	1,2-Dibromoethane	p-Cymene (4-Isopropyltoluene)
Iodomethane	Benzene	Chlorobenzene	1,4-Dichlorobenzene
Carbon disulfide	1,2-Dichloroethane	1,1,1,2-Tetrachloroethane	1,2-Dichlorobenzene-d4 (SURR)
Allyl chloride	Fluorobenzene (ISTD)	Ethylbenzene	1,2-Dichlorobenzene
Methylene chloride	Trichloroethylene	m+p-Xylene	n-Butylbenzene
Acrylonitrile	1,2-Dichloropropane	o-Xylene	Hexachloroethane
trans-1,2-Dichloroethylene	Dibromomethane	Styrene	1,2-Dibromo-3-chloropropane
Methyl tert-butyl ether	Methyl methacrylate	Tribromomethane	Nitrobenzene
1,1-Dichloroethane	Bromodichloromethane	Isopropylbenzene	1,2,4-Trichlorobenzene
2,2-Dichloropropane	2-Nitropropane	p-Bromofluorobenzene (SURR)	1,1,2,3,4,4-Hexachlorobuta-1,3- diene
cis-1,2-Dichloroethylene	cis-1,3-Dichloropropene	Bromobenzene	Naphthalene
2-Butanone	2,2-Dimethoxybutane	1,1,2,2-Tetrachloroethane	1,2,3-Trichlorobenzene
Propanenitrile	Methyl Isobutyl Ketone (MIBK)	1,2,3-Trichloropropane	

80 target compounds

Summary of the Parameters for GC, MSD, and P&T Necessary for Success

Application note 5991-0029EN

- Provided a detailed summary on advances and key parameters for successfully performing EPA 524.2 and EPA 8260 with a 7890/5975C and P&T
- Introduced BFB Autotune that enabled meeting the EPA criteria for spectral correspondence and improved sensitivity and stability

Volatile Organic Compound Analysis Using Purge and Trap

Success with VOC analysis using the Agilent 5975C Mass Selective Detector

Application Note

Environmental

Jeffery S. Hollis AnalySense Sacramento, CA USA Harry Prest Agilent Technologies, Inc. Santa Clara, CA USA

Authors

Abstract

Despite the status and widespread application of Purge and Trap (P&T) with GC/MS for volatile organics, various issues appear in consistent operation over the desired concentration ranges and at the required detection limits. This application note introduces an approach implemented and tested at several beta sites that consistently produces outstanding data. Detailed in this note are the hardware requirements, the P&T and GC/MS parameters, volatile organic compound (VOC) standard preparation, and a new automated tuning approach to meet USEPA tuning requirements that provides enhanced sensitivity and robustness. Initial calibration studies over the specified (USEPA 524.2) concentration range of 0.25 μ g/L to 50 μ g/L routinely produce VOC average relative response factors less than the 20% relative standard deviation (RSD) specified for average relative response factor quantitation. Data is also presented for the method detection limits determined at 0.10 μ g/L to 100 μ g/L. Adhering to the details of this approach will help insure similar results are obtained for VOC analysis with P&T and GC/MS.

EPA Method 524.2 with Agilent 8860/5977B

Application note 5994-0833EN

- Demonstrated applicability of an Agilent 8860/5977B GC/MSD system (a costeffective mid-range solution) coupled with a Teledyne Tekmar Lumin purge and trap (P&T) concentrator, and an AQUATek LVA (liquid vial autosampler) ICAL range 0.25– 50 µg/L
- MDLs in ppt levels
- Deconvoluted spectra for compound identification
- Several VOCs were identified and quantified in real-world drinking water samples

Application Note

Environmental

Authors

Bruce D. Quimby and

Anastasia A. Andrianova

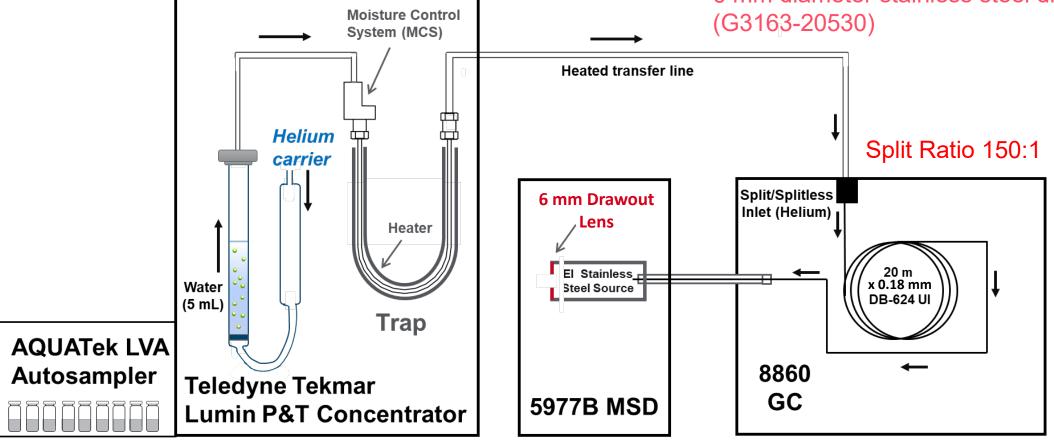
Agilent Technologies, Inc.

Agilent

US EPA Method 524.2: Successful Measurement of Purgeable Organic Compounds in Drinking Water by Agilent 8860/5977B GC/MSD

used around the world as part of insuring the safety of potable water supplies.

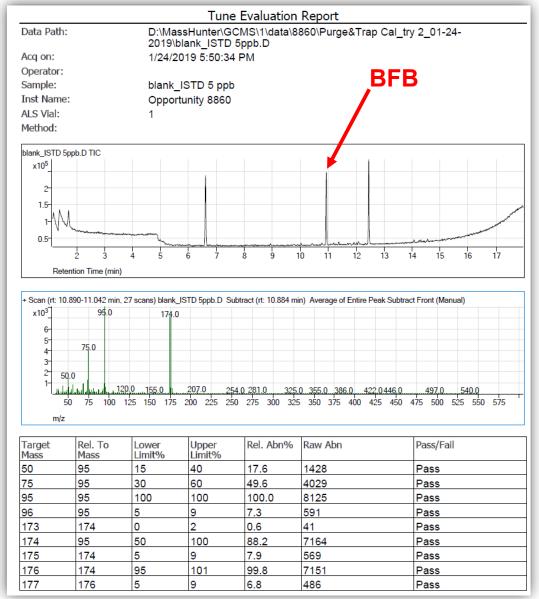
Abstract

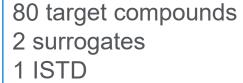

An Agilent 8860/5977B GC/MSD system coupled with a Teledyne Tekmar Lumin purge and trap (P&T) concentrator and an AQUATek liquid vial autosampler (LVA) was successfully used for the analysis of volatile organic compounds (VOCs) to the requirements of United States Environmental Protection Agency (US EPA) method 524.2. The analysis of VOCs in water following this or similar methods are widely

US EPA Method 524.2 **Instrument Configuration**

Consumables:

- 1.0 mm inlet liner (5190-4047)
- DB-624UI, 20m x 0.18 mm x 1µm column (121-1324UI)
- 6 mm diameter stainless steel drawout lens (G3163-20530) Heated transfer line




Tune Evaluation: Meeting BFB Tune Check Criteria

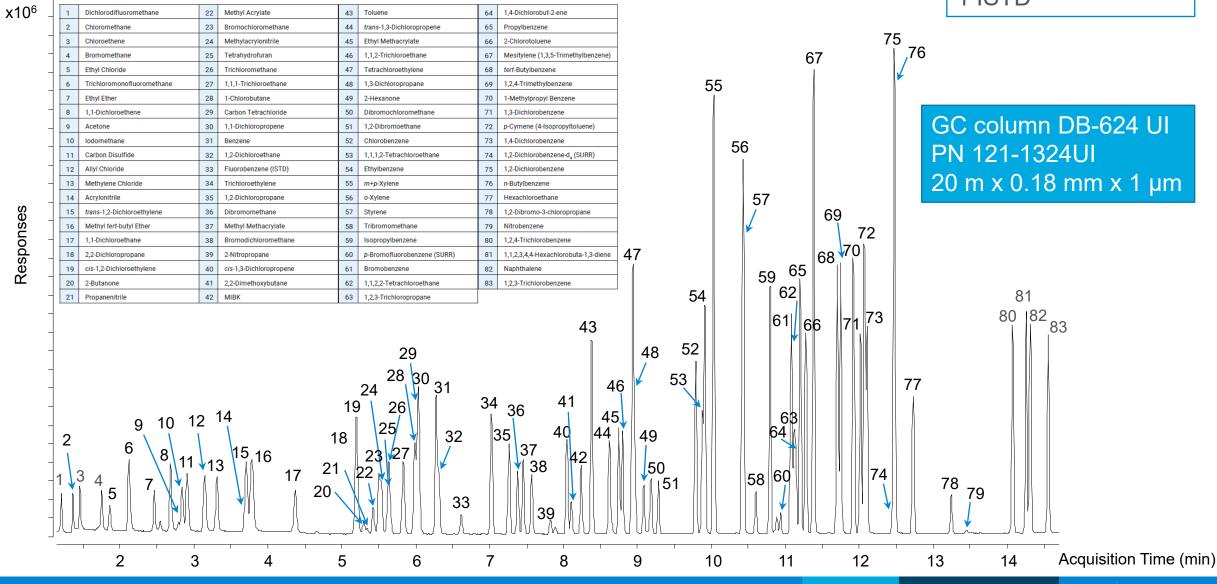

EPA 524.2 requires that the spectrometer must produce a mass spectrum that meets all criteria in Table 3 when 25 ng or less of 4-bromofluorobenzene (BFB) is introduced into the GC.

TABLE 3. ION ABU	NDANCE CRITERIA FOR 4-BROMOFLUOROBENZENE (BFB)
Mass	
(M/z)	Relative Abundance Criteria
50	15 to 40% of mass 95
75	30 to 80% of mass 95
95	Base Peak, 100% Relative Abundance
96	5 to 9% of mass 95
173	< 2% of mass 174
174	> 50% of mass 95
175	5 to 9% of mass 174
176	> 95% but < 101% of mass 174
177	5 to 9% of mass 176

Total Ion Chromatogram of Method 524.2 50 µg/L Standard, ISTD and Surrogates (5 µg/L)

Setting up EPA 524.2 Analysis with MassHunter

- 1. Analyze a standard to create a spectral library with retention times using MassHunter Unknowns Analysis
- 2. Export deconvoluted spectra to MassHunter Library Editor

3. Create quantitative analysis method in MassHunter Quantitative Analysis using acquired scan data with library search

Add targeted deconvolution to quantitative analysis if desired

Create calibration levels from the analyzed calibration standards

Analyze real-world samples

Step 1: Analyzing a Standard

Analyze a calibration standard with Unknowns Analysis against the NIST library

-									U					
🛐 Agilent Ma	assHunter Unknowns Analysis - 50ppb.uaf	f											-	o ×
File Edit	View Analyze Method Report	Tools Help						_						
🖞 🗁 🛃	🗈 🖉 🥙 🜔 Analyze All 🛛 All 🛛 Ta	arget Non-Target Hit	Method				?	X						
Samples			Method				1	^						→ # X
Sample Name		Components	H							1				
50 ppb_ISTD 5	50 ppb_ISTD 5ppb.D	60:	Peak Detection Deconvolu	ution Library Search (Compound Id	lentification Target Match	Blank Subtraction							
			Libraries:											
0	omolo							_						
50	ample		O:\MassHunter\Library\N	IIST17.L			Change Library		1 8					
							Add Library		-0.7914		;	Ŧ		
			Move Up	Move Down		Open Library	Remove Library		Ť II		9			
			Move op	NOVE DOWN		Open Library	Hemove Library				4.07	554		
			Search criteria:		Forv	vard-Reverse Search:			4 8	2.727	1	Ē		
			Pre-search type:			e Weight Factor:				Ť				
					- Circ	0.7			30 88		5406			
Components			Normal	~					10.5		13.2			
File Name	Component RT 🔺 Compound Name	Match Factor Best	Adjust Score			Example:				N MA NA	1. I			
50 ppb_IST	1.2065 Dichlorodifluorometh	96.2				0.0 for reverse search 1.0 for forward search			11.000	12.000 13.0	00 14.000	15.000	16.000	17.000
50 ppb_IST	1.3624 Chloromethane		Remove Duplicate Hits	3		1.0 for forward search			11.000	12.000 13.0	00 14.000	15.000		quisition Time (min)
50 ppb_IST	1.4621 Ethene, chloro-		Match factor:											→ ∓ ×
50 ppb_IST	1.7522 Methane, bromo-			l ibrary	sear	ch agains [.]	t NIST							
50 ppb_IST	1.8575 Ethyl Chloride		Use RT Match		ocar	en agame								
50 ppb_IST 50 ppb_IST	2.1205 Trichloromonofluoro 2.4663 Ethyl ether		RT penalty function:			RT mismatch penalty:								
50 ppb_IST	2.6828 Ethene, 1,1-dichloro-													
50 ppb_IST	2.7934 Acetone		Trapezoidal			Multiplicative								
50 ppb_IST	2.7934 Hydrogen isocyanate		RT range:	6	sec	 Additive 								
50 ppb_IST	2.8410 Methane, iodo-	99.2				Max RT penalty:	20							
50 ppb_IST	2.9071 Carbon disulfide		Penalty-free RT rar	nge: 0	sec	Max n i perialty:	20	_						
50 ppb_IST	3.1450 Allyl chloride		Gaussian											
50 ppb_IST	3.3099 Methylene chloride		1	-					150 200	250 300	350	400 450	500	550 600
50 ppb_IST 50 ppb_IST	3.3105 Methane-d, trichloro- 3.6961 2-Propenenitrile		Standard deviation	: 6	sec				. D.				M	ass-to-Charge (m/z)
50 ppb_IST 50 ppb_IST	3.6961 2-Propenentnie 3.7090 Ethylene, 1,2-dichlor		7						0.0					
50 ppb_IST	3.7091 Ethylene, 1,2-dichlor		RT calibration file:											
50 ppb_IST	3.7866 2-Ethylhexanal ethyl	-	3											
50 ppb_IST	3.7866 Propane, 2-methoxy													
50 ppb_IST	4.3701 Ethane, 1,1-dichloro-		3			New	Choose							
50 ppb_IST	5.1907 Propane, 2,2-dichloro-		3											
50 ppb_IST	5.2017 Ethylene, 1,2-dichlor													
50 ppb_IST	5.2019 Ethene, 1,1-dichloro-			pply to All Samples	Apply to S	Selected Sample D	efault Close	e						
50 ppb_IST	5.2027 Cyclobutane, 1,1-dic 5.2960 2-Butanone	65.3 G						:	155.1 191.1					
50 ppb_IST	5.2960 2-Butanone	90.8		1.18 1.2 1.22			0 50	100	150 200	250 300	350	400 450	500	550 600
<			>		Acquisition T	Time (min)							M	ass-to-Charge (m/z)

Step 2: Creating a Spectral Library

Analyze a calibration standard with Unknowns Analysis against the NIST library

民 Agilent MassHunter Ur	Inknowns Analysis - 50ppb.uaf					– 🛛 🗙
File Edit View Ar	nalyze Method Report Tools Help					
i 🛅 📂 🛃 📭 🛛 🕫	🝽 🜔 Analyze All All Target Non-Target 🛛 Hit Non-Hit Manual 🖗					
Samples		🗕 🕂 🗶 C	2			↓ ∓ X
Sample Name File Nar		+	+TIC Scan 욑 x10 6-	50 ppb_ISTD 5ppb.D		
50 ppb_ISTD 5 50 ppb_	_ISTD 5ppb.D 603 105		ц 2 г			
			2.	Export Component Table	×	
			1. 1.	Export from:		914 11.2258 12.47200 12.47200 12.47200 12.47200
			1.	All components/hits		
			1.			2240 0.716
Rev	view search results		0.	Selected components/r	hits	
		- + X	0. 0.	Export to:		43.2406
Components		amponent Area	0.	14		
File Name	Component RT 🔺 Compound Name	452360.9 408459.8	-1	Library	~	11.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 Acquisition Time (min)
50 ppb_IST	1 2005 Diablans diffusion and		Ion Pea	Automatically name compour	nds for non-hit components	Acquisition Time (min)
	Add/Remove Columns		Compoi			
50 ppb_IS		260548.9	월 x10 2.	Prefix:		
50 ppb_IS	Сору	858659.5	2.	Unknown		Deconvoluted spectrum
	0 + D + + 1 D	455981.9	2.	Children		
50 ppb_IS	Set Best Hits	848692.4 134271.0	2.	Add index		
50 ppb_IS	Show Alternate Hits	103826.8	2.			0.0
ou bbp_la		449762.6	2.	 Add retention time 		
50 ppb_IS	Delete Components/Hits Del	816115.0		0		NIST spectrum
	· · · ·	744666.1	1. 1.		OK Cancel	
50 ppb_IS	Restore All Components/Hits	714108.8	1.		Cancer	150 200 250 300 350 400 450 500 550 600
50 ppb_IS		343251.6	i L			Mass-to-Charge (m/z)
	Set Hits as ISTDs	294670.3 824938.9	1. 1.3-		[원 x10 ²] 85.0) 5ppb.D
50 ppb_IS		845869.1	1.2-		S 0.9	
50 ppb_IS	Format Column	1010895.0	1-		0.8-	
	-	1133587.9	0.9- 0.8-		0.7-	Anov encotrum
50 ppb_IS	Export	608656.9	0.7-		0.6-	Apex spectrum
50 ppb_IS 🗾		834972.8	0.6- 0.5-	\parallel \sim $\rangle\rangle$	0.4- 44.0	
	Print	857980.3	0.4 - 0.3 -		0.3-	
50 ppb_IS	Print Preview	874059.6	0.2 -		0.2- 67.1	
		362350.2 227610.1	0.1-			
50 ppb_IST	3.3099 Methylene chloride	100401.4		1.18 1.2 1.22 1.24 1.26	0 50 10	0 150 200 250 300 350 400 450 500 550 600 Mass-to-Charge (m/z)
50 pph IST	3 3105 Methane-d trichlom-	>		Acquisition Time (min)] J	Mass-to-Charge (m/z)

🔆 Agilent

DE.44140.5720486111

Step 2: Creating a Spectral Library

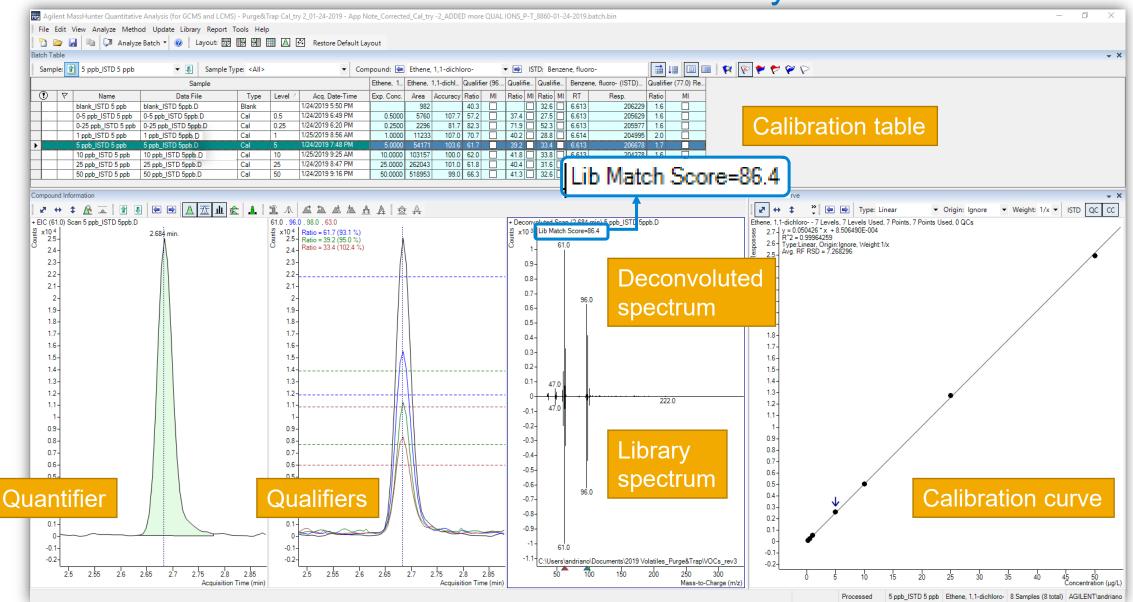
Export deconvoluted spectra to the Library Editor and review

	X 🖻 🛍 9 🤊 (<mark>3</mark> 🏦 🔑	X								
pound 1	able cound ID Compound Name	CAS#	Formula	M.L. With D		Retention Index				
Con	3 Methane, bromo-	74-83-9	CH3Br	Molecular Weight Re 93.942	1.7522	Retention Index				
	4 Ethyl Chloride	75-00-3	C2H5CI	64.008	1.8575	445.0000				
	5 Trichloromonofluoromethane	75-69-4	CCI3F	135.905	2.1205	445.0000				
	6 Ethyl ether	60-29-7	C4H10O	74.073	2.4663	495.0000				
	7 Ethene, 1,1-dichloro-	75-35-4	C2H2CI2	95.953	2.6828	540.0000				
	8 Acetone	67-64-1	C3H6O	58.042	2.7934	455.0000				
	9 Methane, iodo-	74-88-4	CH3I	141.928	2.8410					
	10 Carbon disulfide	<u>75-15-0</u>	CS2	75.944	2.9071					
	11 Allyl chloride	<u>107-05-1</u>	C3H5CI	76.008	3.1450	535.0000				
	12 Methylene chloride	<u>75-09-2</u>	CH2Cl2	83.953	3.3099					
	13 Acrylonitrile	<u>107-13-1</u>	C3H3N	53.027	3.6961	555.0000				
	14 Ethylene, 1,2-dichloro-, trans-	<u>156-60-5</u>	C2H2Cl2	95.953	3.7091	580.0000				
	15 Methyl tert-butyl ether	<u>1634-04-4</u>	C5H12O	88.089	3.7866	510.0000				
	16 Ethane, 1,1-dichloro-	<u>75-34-3</u>	C2H4Cl2	97.969	4.3699	566.0000				
	17 Propane, 2,2-dichloro-	<u>594-20-7</u>	C3H6Cl2	111.985	5.1918	550.0000				
	18 Ethylene, 1,2-dichloro-, cis-	<u>156-59-2</u>	C2H2Cl2	95.953	5.2017	580.0000				
	19 2-Butanone	<u>78-93-3</u>	C4H8O	72.058	5.2960	555.0000				
	20 Propanenitrile	<u>107-12-0</u>	C3H5N	55.042	5.3463	565.0000				
	21 2-Propenoic acid, methyl ester	<u>96-33-3</u>	C4H6O2	86.037	5.4245					
trum Vi	22 Methane. bromochloro-	74-97-5	CH2BrCl	127.903	5.5029		 			
	anes: 2 🔹 📩 😭	i								
_	ngleQuadrupole + Scan Trichloromonofluo									
) 4 -		101.0								
1- 5-		101.0								
.9-										
.85 -										
0.8-										
./5- 0.7-										
65-										
0.6-										
.55 -										
0.5-										
0.4-										
35-										
).3-										
.25-										
.25- 0.2-										
0.25 - 0.2 - 0.15 - 0.1 -	47.0									

Step 3: Creating Quantitative Analysis Method New method from acquired scan data with library search

Fi	ile Edit View Analyze Method Update	e Libr	ary Report T	ools Hel	р															
	New	•	New Metho	d from A	quired SIN	/I Data														
	Open	•	New Metho	d from A	quired Sca	an Data														
	Append	•	New Metho	d from A	quired Sca	an Data with Library Sear] Ethene,	, 1,1-dichl	oro-	- 📄	ISTD:	Benzene, f	nzene, fluoro-				V 💙 🧡 🛐 🗿 🗿 V			
2	Edit F10		New Metho	lew Method from Acquired Chromatographic Data						Qualifi	er (96.0) Re	Qualifier	r (98.0) Re	Qualifier	(63.0) Re	Benzer	ne, fluoro- (ISTD)	Qualifie	r (77.0) Re	
R	Validate		New Metho	d using N	lanual Setu	up	[Area	Accuracy	Ratio	MI	Ratio	MI	Ratio	MI	RT	Resp.	Ratio	MI]
	Save		New metho	d from lib	rary - GC			982 5760	107.7	40.3 57.2		37.4		32.6 27.5		6.613 6.613	206229 205629			-
0.00	Save As		New metho	d from lib	rary - LC			2296		82.3		71.9		52.3		6.613	205977	1.6		
	Method Report		New Metho	od from Cl	F file			11233 54171	107.0	70.7		40.2 39.2		28.8 33.4		6.614 6.613	204995 206678			
×	Exit F11	pp	- b_corrected.D	Cal	10	1/25/2019 9:25 AM	10.0000			62.0		41.8		33.8		6.613	206678			-
_		pp	b.D	Cal 25 1/24/2019 8:47 PM 25.0000 2620					101.0	61.8		40.4		31.6		6.619	205609	1.8		1

Step 3: Creating Quantitative Analysis Method Define ISTD and surrogates


File Edit View Analyze Method Update Library Report	Tools Help				
🛅 🗁 📓 🛱 🖓 Analyze Batch 🔻 🞯 🛛 Layout: 🖽					
Nethod Tasks	 X Method Table 				
New / Open Method	Time Segment: 🖨 <all> 🔻 🔿</all>	Compound: 🔄 Benzene, fluo	ro- 🔻 📑 🛛 Reset Table Vie	ew	
Workflow	Quantifier				
Method Setup Tasks	Name	RT 🗠 Scan	Туре	MZ CAS#	Match Factor
Compound Setup	1-Propene, 1,1-dichloro-	6.038 Scan	Target	75.0 563-58-6	100.0
	Benzene	6.274 Scan	Target	78.0 71-43-2	99.9
🎢 Retention Time Setup	Ethane, 1,2-dichloro-	6.308 Scan	Target	62.0 <u>107-06-2</u>	99.5
😥 ISTD Setup	Benzene, fluoro-	6.614 Scan	Target 🗸 🗸	96.0 <u>462-06-6</u>	100.0
Concentration Setup	Trichloroethylene	7.023 Scan	Target	130.0 <u>79-01-6</u>	100.0
	Propane, 1,2-dichloro-	7.261 Scan	ISTD Surrogate	63.0 <u>78-87-5</u>	100.0
🥂 Qualifier Setup	Methane, dibromo-	7.379 Scan	Matrix Spike	174.0 <u>74-95-3</u>	100.0
🗶 Calibration Curve Setup	Methyl methacrylate	7.453 Scan	Target	100.0 <u>80-62-6</u>	100.0
,- · ·	Methane, bromodichloro-	7.568 Scan	Target	83.0 <u>75-27-4</u>	99.2
🚰 Globals Setup	Propane, 2-nitro-	7.820 Scan	Target	43.0 <u>79-46-9</u>	99.5
Save / Exit	1-Propene, 1,3-dichloro-, cis-	8.044 Scan	Target	75.0 <u>10061-01-5</u>	100.0
Save / EXIL	2,2-Dimethoxybutane	8.105 Scan	Target	89.0 <u>3453-99-4</u>	99.9
谢 Validate	Methyl Isobutyl Ketone	8.237 Scan	Target	58.0 <u>108-10-1</u>	99.7
	Toluene	8.380 Scan	Target	91.0 <u>108-88-3</u>	100.0
Save		8.619 Scan	Target	75.0 <u>10061-02-6</u>	100.0
Save As	Methacrylic acid, ethyl ester	8.748 Scan	Target	69.0 <u>97-63-2</u>	100.0
	Ethane, 1,1,2-trichloro-	8.797 Scan	Target	97.0 <u>79-00-5</u>	99.8
X Exit	Tetrachloroethylene	8.933 Scan	Target	164.0 <u>127-18-4</u>	99.9
Manual Setup Tasks	Propane, 1,3-dichloro-	8.961 Scan	Target	76.0 142-28-9	99.8
	2-Hexanone	9.082 Scan	Target	58.0 <u>591-78-6</u>	99.6
Outlier Setup Tasks	Methane, dibromochloro-	9.181 Scan	Target	129.0 124-48-1	99.6
Advanced Tasks	Ethane, 1,2-dibromo-	9.284 Scan	Target	109.0 106-93-4	99.7
	Benzene, chloro-	9.787 Scan	Target	112.0 108-90-7	100.0
	Ethane, 1,1,1,2-tetrachloro-	9.875 Scan	Target	133.0 630-20-6	99.1
	Ethylbenzene	9.909 Scan	Target	91.0 100-41-4	100.0
	m+p-Xylene	10.028 Scan	Target	91.0 108-38-3	100.0
	o-Xylene	10.418 Scan	Target	91.0 95-47-6	100.0
	Styrene	10.431 Scan	Target	104.0 100-42-5	100.0
	Methane, tribromo-	10.600 Scan	Target	173.0 75-25-2	100.0
	Benzene, (1-methylethyl)-	10.791 Scan	Target	105.0 98-82-8	100.0
	p-Bromofluorobenzene	10.933 Scan	Target	174.0 460-00-4	100.0
	Benzene, bromo-	11.074 Scan	Target	158.0 108-86-1	100.0
	Ethane, 1.1.2.2-tetrachloro-	11.083 Scan	Target	83.0 79-34-5	100.0

Step 3: Creating Quantitative Analysis Method Add target deconvolution (optionally)

Agilent MassHunter Quantitative Analysis (for GCMS and LCMS) - M	ethod - <c:\users\andriano\documents\2019 2_01-24-2019\="" <="" cal_try="" th="" volatiles_purge&trap\purge&trap=""></c:\users\andriano\documents\2019>
File Edit View Analyze Method Update Library Report Tools	Help
👔 🛅 🗁 🛃 斗 🖓 Analyze Batch 🔹 🥥 🛛 Layout: 🔜 🔢	🕅 🛄 🖾 Restore Default Layout
Method Tasks	Method Table
New / Open Method	Target Deconvolution Setup 🗙 🗧
Workflow	Reference Library:
Target Deconvolution Setup	Setup Reference Library
Screening - GC	Library Method:
Screening - LC	C:\Users\andriano\Documents\2019 Volatiles_Purge&Trap\P&T UA lib method.uamethod.xml
Method Setup Tasks	Edit New Choose
Compound Setup	
K Retention Time Setup	Spectrum Setup: Deconvoluted scan as Spectrum Extraction Override
is ISTD Setup	Show reference spectrum
n Concentration Setup	Show override spectrum
🛣 Qualifier Setup	Show match scores
🚀 Calibration Curve Setup	Outlier Setup:
💕 Globals Setup	Library Match Score Minimum
Save / Exit	60
💸 Validate	Min. Percent Purity
a Save	60
Save As	Alternative Peak Criteria
	Deconvoluted Library Match Score
Exit	OK Cancel
Manual Setup Tasks	
Outlier Setup Tasks	Compound Information
Advanced Tasks	

ICAL Review in MassHunter Quantitative Analysis 10.1

Initial Calibration (ICAL)

0.25–50 μ g/L for 68 compounds (85%)

0.50–50 µg/L for 74 compounds (93%)

79 compounds out of 80 met the EPA criteria of less than 20% RSD with linear calibration

A quadratic fit with R^2 of 0.9963 was used for iodomethane

 The %RSDs for the internal standard and surrogate compounds introduced by the AQUATek

 LVA were <5% RSD</td>

 Table 4. ICAL for Method 524.2 From 0.25 to 50 µg/L.

		0.25 µg/L	0.5 µg/L	1 µg/L	5 µg/L	10 µg/L	25 µg/L	50 µg/L		
Compound	RT (min)	RRF	RRF	RRF	RRF	RRF	RRF	RRF	Avg RRF	%RSD
Fluorobenzene (ISTD)	6.613	ISTD	ISTD	ISTD	ISTD	ISTD	ISTD	ISTD	1.000	0.6
Dichlorodifluoromethane	1.207	0.087	0.150	0.178	0.136	0.157	0.153	0.153	0.145	19.6
Chloromethane	1.362	0.148	0.178	0.143	0.159	0.170	0.162	0.161	0.160	7.5
Chloroethene	1.462	0.244	0.182	0.212	0.180	0.191	0.183	0.184	0.196	12.0
Bromomethane	1.752				0.149	0.145	0.119	0.117	0.132	12.8
Ethyl Chloride	1.858	0.066	0.118	0.104	0.099	0.115	0.113	0.112	0.104	17.2
Trichloromonofluoromethane	2.120	0.299	0.353	0.342	0.337	0.334	0.337	0.336	0.334	5.0
Ethyl Ether	2.466	0.062	0.096	0.115	0.099	0.105	0.105	0.106	0.098	17.4
1,1-Dichloroethene	2.683	0.223	0.280	0.274	0.262	0.252	0.255	0.250	0.257	7.3
Acetone	2.793				0.021	0.022	0.020	0.020	0.021	5.1
lodomethane	2.841	0.186	0.160	0.177	0.171	0.209	0.275	0.297	0.211	0.9963*
Carbon Disulfide	2.907	0.603	0.515	0.516	0.477	0.489	0.483	0.489	0.510	8.5
Allyl Chloride	3.145	0.074	0.089	0.071	0.091	0.099	0.089	0.089	0.086	11.8
Methylene Chloride	3.310	0.225	0.182	0.178	0.179	0.174	0.171	0.171	0.183	10.5

Agilent

Method Detection Limits (MDLs)
<0.10 µg/L for 58 compounds (73%)</pre>

<0.15 µg/L for 66 compounds (83%)

8 trials at 0.25 $\mu g/L$ for 66 compounds

For the compounds with higher reporting limits – 8 trials at 0.5 and 1 μ g/L

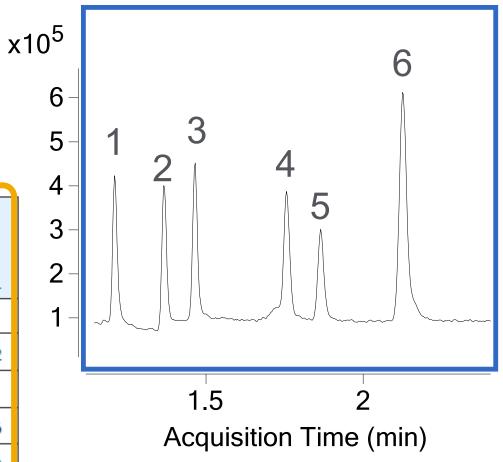
 $MDL = S \times t_{(n-1, 1-alpha = 99)} = S \times 2.998$

MDLs in pg level

1	.2	Method detection limits (MDLs) (3) are compound, instrument and especially matrix
		dependent and vary from approximately 0.02 to 1.6 µg/L.

Table	e 5.	Calculated	MDLs	for	VOCs.
-------	------	------------	------	-----	-------

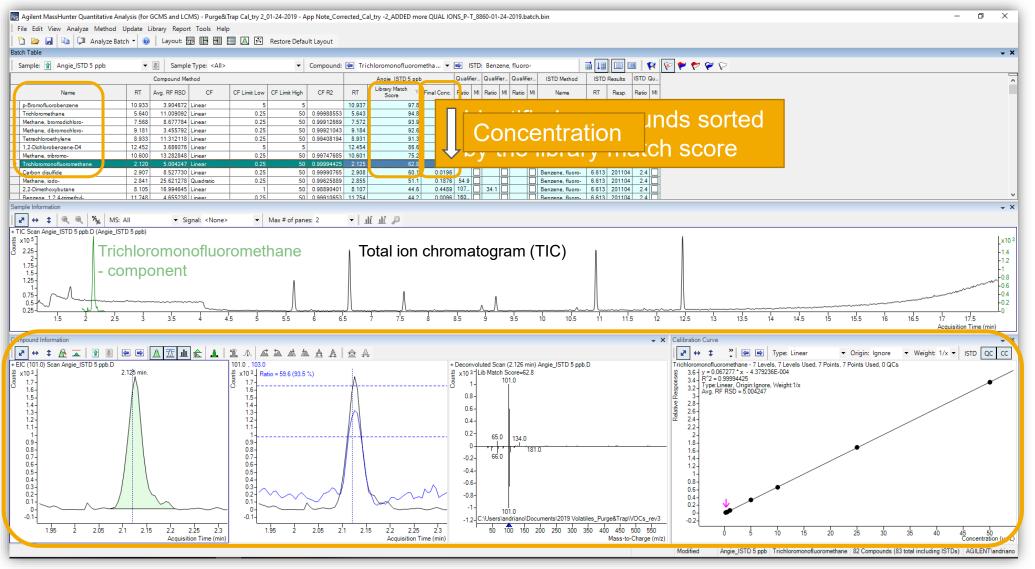
				Calcula	ated Conce	entration in	the Samp	le (µg/L)			Average		
Compound	RT (min)	Spike (µg/L)	Samp. 1	Samp. 2	Samp. 3	Samp. 4	Samp. 5	Samp. 6	Samp. 7	Samp. 8	concentration (µg/L)	SD	MDL
Fluorobenzene (ISTD)	6.613	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	N/A	N/A
Dichlorodifluoromethane	1.207	0.25	0.23	0.24	0.24	0.24	0.26	0.22	0.24	0.23	0.24	0.010	0.031
Chloromethane	1.362	0.25	0.26	0.26	0.25	0.24	0.23	0.29	0.25	0.26	0.26	0.017	0.052
Chloroethene	1.462	0.25	0.17	0.17	0.14	0.14	0.18	0.15	0.16	0.19	0.16	0.017	0.051
Bromomethane	1.752	1.00	0.88	1.03	0.90	0.91	0.78	0.74	0.75	0.97	0.87	0.106	0.316
Ethyl Chloride	1.858	0.25	0.36	0.34	0.29	0.35	0.29	0.38	0.37	0.37	0.34	0.035	0.103
Trichloromonofluoromethane	2.120	0.25	0.25	0.24	0.18	0.23	0.18	0.26	0.20	0.21	0.22	0.030	0.091
Ethyl Ether	2.466	0.25	0.28	0.21	0.29	0.27	0.33	0.23	0.27	0.30	0.27	0.038	0.114
1,1-Dichloroethene	2.683	0.25	0.24	0.24	0.27	0.23	0.24	0.21	0.24	0.25	0.24	0.019	0.057
Acetone	2.793	1.00	1.04	1.21	1.51	1.33	1.37	1.25	1.03	1.08	1.23	0.173	0.518



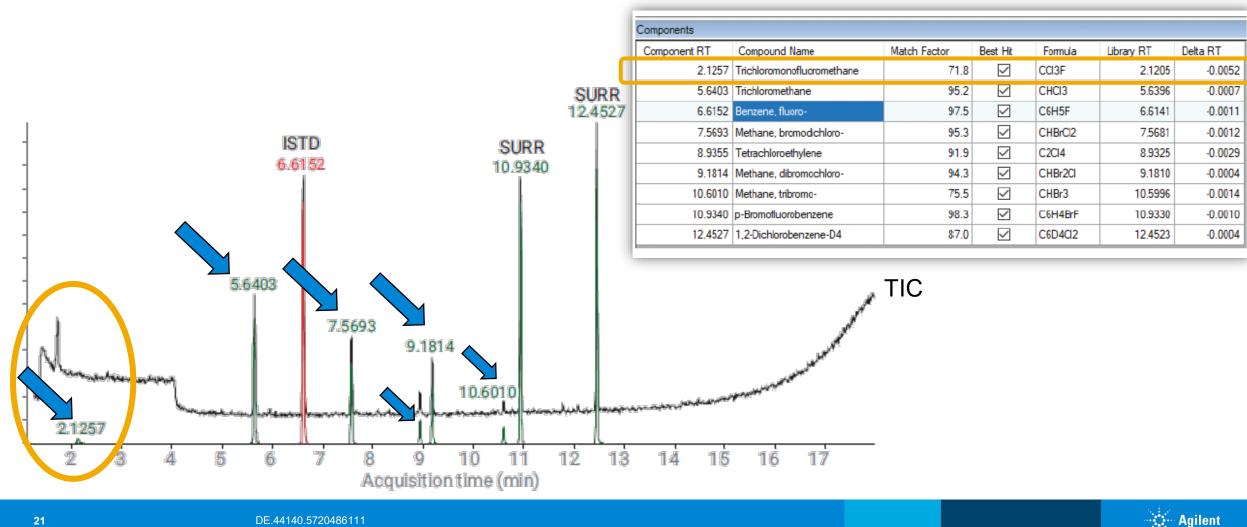
MDLs for Gases

$$MDL = S \times t_{(n-1, 1 - alpha = 99)} = S \times 2.998$$

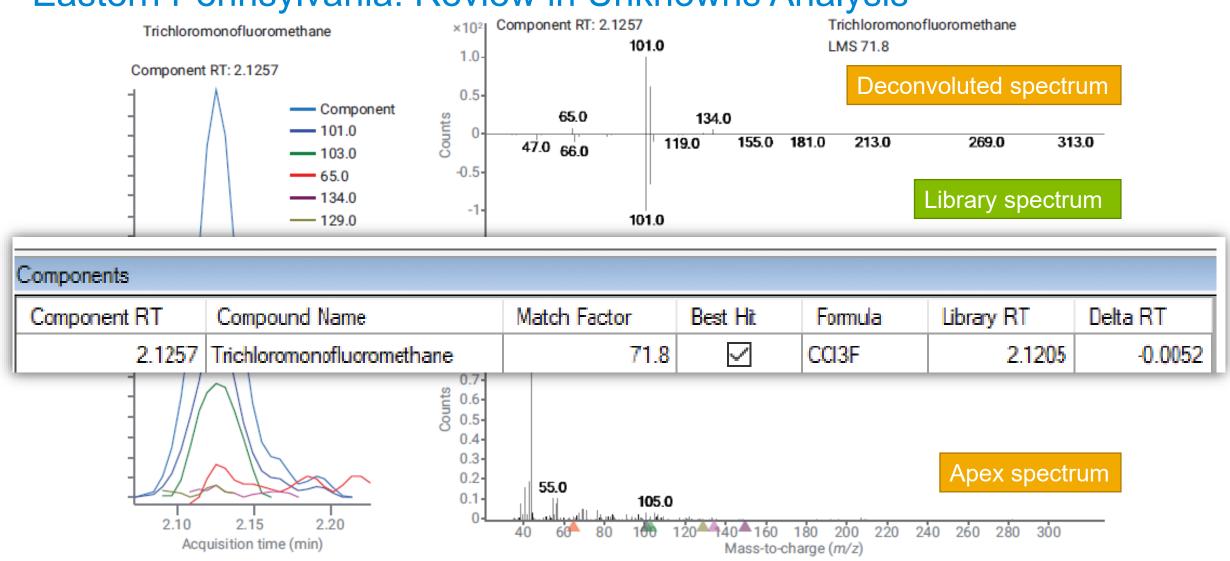
Table 5. Calculated MDLs for VOCs.


	Compound	RT (min)	Average concentration (µg/L)	SD	MDL
1	Dichlorodifluoromethane	1.207	0.24	0.010	0.031
2	Chloromethane	1.362	0.26	0.017	0.052
3	Chloroethene	1.462	0.16	0.017	0.051
4	Bromomethane	1.752	0.87	0.106	0.316
5	Ethyl Chloride	1.858	0.34	0.035	0.103
6	Trichloromonofluoromethane	2.120	0.22	0.030	0.091

US EPA Method 524.2: Real World Samples


Tested tap water sample from Eastern Pennsylvania: MassHunter Quantitative Analysis

US EPA Method 524.2: Real World Samples


Tested tap water sample from Eastern Pennsylvania: MassHunter Unknowns Analysis

VOCs found:

Trichloromonofluoromethane Found in a Tap Water Sample from Eastern Pennsylvania: Review in Unknowns Analysis

US EPA Method 524.2: Real World Samples

VOCs found in a tap water sample from four sources in Pennsylvania

		Concentration (µg/L)					
Compound	RT (min)	Southern Pennsylvania	Eastern Pennsylvania	Southeastern Pennsylavania	City of Philadelphia		
Trichloromonofluoromethane	2.120		0.30				
Trichloromethane (Chloroform)	5.640	1.05	7.15	12.56	14.06		
Bromodichloromethane	7.568		5.15	4.81	5.77		
Toluene	8.380	0.29					
Tetrachloroethylene	8.933		0.36				
Dibromochloromethane	9.181		4.49	1.03	1.44		
Tribromomethane	10.600		1.26				

Summary

The 8860/5977B GC/MSD system equipped with a 6 mm diameter drawout lens, coupled with a Teledyne Tekmar Lumin P&T concentrator, and an AQUATek LVA is suitable for analyzing VOCs with an ICAL range of 0.25 to 50 μ g/L

BFB Autotune provides high sensitivity and stability, while maintaining the required ion abundance ratios in the BFB spectrum

Several VOCs were identified and quantified in real world tap water samples at concentrations varying over the range of 0.3 to 14.1 μ g/ L, in many cases much lower than current EPA 524.2 MCLs