

Theory and Key Principles Series Gas Chromatography (GC)

Session 3 – The Split/Splitless Inlet

Introduction

Welcome to Shimadzu's Gas Chromatography Theory and Key Principles Series!

Presenter

Andrew Clissold

GC/GCMS Business Manager

Theory & Key Principles Series – GC

- Introduction to Gas Chromatography *
- GC Columns *
- The Split/Splitless Inlet
- Advanced Liquid Injection Techniques
- Alternatives to Liquid Injection
- Choices of Detectors for GC
- Processing GC Data
- Maintenance & Troubleshooting
- * Now available on demand at www.shimadzu.co.uk/webinars

The Split/Splitless Inlet

In this presentation:

- The GC Inlet
 - The packed injector let's start simple!
- The Split/Splitless Inlet
 - Why can't we just use a packed inlet?
- Split Mode
 - The split ratio
- Splitless Mode
 - Why, when & how?
 - High pressure splitless injection
- Carrier Gas Saver

The GC Inlet

Shimadzu UK Theory & Key Principles Series – GC Session 3

Shimadzu UK Theory & Key Principles Series – GC Session 3

The GC inlet

Sometimes called a GC Injector

"Entry system" for sample & carrier gas onto the column.

A **flow controller** manages the pressure/speed/flow of gas down the column.

The GC inlet

A metal tube brings the **carrier gas** from the flow controller.

A **septum nut**, with a **needle guide**, is screwed on the top.

A rubber **septum** allows the needle to inject sample inside.

The GC inlet

Septum purge

At high temperatures, chemicals can be released from the septum and appear as **ghost peaks** on a chromatogram.

To remove this contamination, most inlets are fitted with a **septum purge**.

A small flows prevents the off-gassed chemicals going down the liner.

The septum purge is connected to the **flow controller**, where the flow rate is regulated to around 3 mL/min.

Packed injector

This completes the components of a **packed injector**.

For **packed columns**, or **wide-bore capillary columns** (>0.53 mm i.d.).

For a packed column, a typical **column flow** is 30 mL/min.

With a **purge flow** of 3 mL/min, this gives a **total flow** of 33 mL/min.

Shimadzu UK Theory & Key Principles Series – GC Session 3

Injection process

With a typical liquid injection, 1 μL of a diluted sample is injected.

Under common conditions, 1 μL of liquid expands to about 250 μL of gas!

Injection process

1 μ L of liquid expands to about 250 μ L of gas!

Volume of gas must be less than the volume of the liner.

Liner volume is approx. 500uL.

Injecting too much can result in **backflash**.

Highly polar solvents have a much greater expansion volume – the injection volume must be reduced.

Solvent expansion calculators

Google 'Liner Selection Tool':

www.trajanscimed.com > products > mn-1024-g 💌

Liner selection tool - Trajan Scientific and Medical

The liner selection tool helps you select the right inlet liner for your analysis. The tool also includes a handy Vapor Volume Calculator that checks if you are ...

SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 3

Liner volume

The liner volume has an important effect on **peak shape**.

At 30 mL/min, the sample is flushed from the 0.5 mL liner in 1 second.

Sample bandwidth is 1 second wide at the head of the column.

Remember: peaks typically only get wider over time!

Shimadzu UK Theory & Key Principles Series – GC Session 3

Problems with capillary columns

Much narrower inner diameter than packed columns.

To maintain the optimal linear velocity, column flow is very low.

To flush the 0.5 mL liner volume now takes 30 seconds! This is far too long.

Peak widths need to be approx. 3 seconds.

> Broad peak

Low detection sensitivity

SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 3

Problems with capillary columns

Packed columns are 'packed' with stationary phase.

Capillary columns have just **mg amounts of stationary phase**.

Injecting too much sample causes **column overload**, which leads to very poor peak shape.

Shimadzu UK Theory & Key Principles Series – GC Session 3

Split flow

The solution – add a **split line!**

This is an 'escape route' for the excess flow that can no longer go down the column.

This allows:

- Optimised column flow
- High flow rate through the liner
- Sample dilution

Split line flow is regulated by the flow controller.

Split Mode

Shimadzu UK Theory & Key Principles Series – GC Session 3

Shimadzu UK Theory & Key Principles Series – GC Session 3

Split ratio

The **split ratio** determines the dilution factor of the sample onto the column.

1 mL/min **column flow**

29 mL/min **split flow**

For every 30 portions of sample, 1 is analysed.

Split ratio = 30:1

Shimadzu UK Theory & Key Principles Series – GC Session 3

Split ratio

What effect does split ratio have on peak shape and size?

Higher split ratio =

- Narrower peaks
- Smaller peak area

Lower split ratio =

- Wider peaks
- Larger peak area

SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 3

Drawbacks of split mode

A high split flow also results in a high carrier gas consumption rate.

Relies on high sample concentrations to enable further dilution.

Splitless Mode

Shimadzu UK Theory & Key Principles Series – GC Session 3

Splitless mode

Used when **sample concentration is too low** for split analysis.

Split flow is off so everything transfers onto the column.

Column flow is still 1 mL/min.

Sample bandwidth is around 1 minute.

Solvent effect

The vaporised sample transfers from inlet to column.

The column inside the oven is kept at least 20 °C below the solvent boiling point.

Sample condenses on the head of the column.

Solvent effect

The vaporised sample transfers from inlet to column.

The column inside the oven is kept at least 20 °C below the solvent boiling point.

Sample condenses on the head of the column.

Oven heats, evaporating solvent, which leaves behind a sharp band of analytes. These analytes must have a **boiling point at least 20 °C above solvent boiling point**, or they'll evaporate with the solvent.

Shimadzu UK Theory & Key Principles Series – GC Session 3

Sampling time

Sampling time

Sampling time

Shimadzu UK Theory & Key Principles Series – GC Session 3

High pressure injection

Sometimes called **pulsed splitless**.

Inlet pressure is increased during sampling time to speed up transfer to column.

Shimadzu UK Theory & Key Principles Series – GC Session 3

High carrier gas flow rates

High gas consumption costs time & money.

Both split & splitless modes can consume very large quantities of gas (>100 mL/min).

Modern GC hardware and software has a built-in **gas saver mode** to minimise consumption.

When to turn down the flow

In **split mode**, a high split dilutes the sample and increases transfer rate.

But what does the high split flow do after all the sample is transferred? Not much!

In **splitless mode**, a high split flow helps remove the final traces of the sample from the inlet.

But for how long does the inlet need to be flushed?

Carrier gas saver mode settings

All of these extra tubes on the inlet make it easy for air to diffuse inside, so always maintain a low flow rate through the split line (except in the sampling time for splitless mode).

A split ratio of 5:1 is usually sufficient.

Split mode

Enable carrier gas saver mode after 1 minute.

Splitless mode

Enable carrier gas saver mode 1 minute after the sampling time has finished.

Summary

Shimadzu UK Theory & Key Principles Series – GC Session 3

Summary

- The split/splitless inlet is optimised for use with capillary columns.
- It is comprised of:
 - Septum nut and septum
 - Liner with O-ring (with a fixed internal volume, making backflash possible if the injection volume is too high)
 - A heated body
 - Septum purge (to remove contaminants caused by a heated septum)
 - **Split line** (to dilute sample flow and increase sample transfer)
- **Split mode** is the most common technique, and is the go-to mode.
 - The split line speeds up transfer of the sample onto the column and dilutes it down prior to column transfer.
 - The **split ratio** defines the sample dilution the higher the ratio, the less sample is transferred to the column.
 - Higher split ratios give thinner, sharper peaks
- **Splitless mode** is used only when sample concentration is too low to split it.
 - The split line is closed to facilitate full sample transfer to the column.
 - It relies on **solvent focussing**, where the analytes need to be significantly less volatile than the solvent.
- **Carrier gas saver** helps reduce gas consumption by reducing the split ratio after the injection.

Next time

The next session will be on...

Advanced Liquid Injection Techniques

This will cover:

- When is split/splitless unsuitable
- Programmable Temperature Vaporisation (PTV) technique
- On-Column Injection (OCI) technique
- Large Volume Injection (LVI) using a Multi-Mode Inlet (MMI)

Shimadzu UK e-News

Join our e-News mailing list today!

Benefits of joining:

- Be entered into our prize draws & competitions
- Find out about our latest webinars, workshops & events
- Receive exciting information about the latest analytical technology & application notes

Look for the link in our follow-up email or go to www.shimadzu.co.uk and click on e-News

Shimadzu UK webinars

Please visit our website to check out our other webinar sessions that are open for registration or are available on demand:

www.shimadzu.co.uk/webinars

Thank you for your attention!

Excellence in Science

UK Contact Details

www.shimadzu.co.uk

info@shimadzu.co.uk

01908 552209

Shimadzu UK Limited

Thank you for your attention!

Excellence in Science

Global Contact Details

www.shimadzu.com/an/

