

Theory and Key Principles Series Gas Chromatography (GC)

Session 2 – GC Columns

Introduction

Welcome to Shimadzu's Gas Chromatography Theory and Key Principles Series!

Presenter

Andrew Clissold

GC/GCMS Business Manager

Theory & Key Principles Series – GC

- Introduction to Gas Chromatography *
- GC Columns
- The Split/Splitless Inlet
- Advanced Liquid Injection Techniques
- Alternatives to Liquid Injection
- Choices of Detectors for GC
- Processing GC Data
- Maintenance & Troubleshooting

* Now available on demand at www.shimadzu.co.uk/webinars

Introduction to gas chromatography

In this presentation:

- Different types of GC columns
 - Packed & capillary
- The different column dimensions and their relevance
 - Length, internal diameter & film thickness
- Column phases and polarity
 - Non-polar, mid-polar & polar
 - Different phase materials
- Temperature ranges

Types of columns

Shimadzu UK Theory & Key Principles Series – GC Session 2

Types of columns

Packed columns

Capillary columns

Capillary columns

Wall Coated Open Tubular (WCOT)

Lined with liquid phase or a chemical bonding layer

Most common in modern GC applications

Porous Layer Open Tubular (PLOT)

Lined with immobilised porous polymer or alumina, etc.

🕀 SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 2

Resolution

The main difference between packed and capillary column chromatography is **resolution**.

This is a **measure of separation** between two components on a chromatographic system.

The more separated two peaks are, the greater the resolution.

🕀 SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 2

Benefits of capillary columns

Resolution can be >10x higher than packed columns This means we can separate components on column efficiency rather than selectivity Fewer stationary phase chemisties are required

Capillary column properties

Capillary columns

4 Key Properties

Length(m) Internal diameter (mm) Film thickness (µm) of stationary phase Solid phase chemistry These parameters, combined with **carrier gas** (type and speed) and **oven temperature** determine the separation of components

How to identify capillary columns

Column dimensions

<u>Length</u>

Whilst increasing column length increases separating power (resolution), it is not a linear relationship! A column that is 2x longer will not have 2x resolution.

But, the longer a column is, the more time compounds spend inside. Long retention times cause compounds to broaden, reducing sensitivity & peak separation.

Column dimensions

Column dimensions

Internal diameter

A narrower internal diameter gives sharper peaks, therefore better resolution and sensitivity.

But, a narrower column reduces the amount of sample that can be effectively separated! Injecting too much of a single compound causes **column overload**.

Column dimensions

Film thickness

Thicker films will retain compounds longer, so thick films are good for very volatile compounds. Equally, a thin film will have a lower retention, so is ideal for very high-boiling components.

Common dimensions

<u>Length</u>	Internal Diameter	Film Thickness	Application	
30m	0.25mm	0.25um	Most common dimensions, suitable for 90% of applications.	
30m	0.32mm	1.4um	Analysis of very volatile organics in waste water.	
15m	0.25mm	0.1um	Analysis of high-boiling phthalates in electrical components	
10m	0.1mm	0.1um	Fast GC applications (for higher sampler throughput)	

Stationary phase chemistry

🕀 SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 2

Stationary phase chemistry

Capillary column chemistry is usually measured based on its polarity.

Columns are largely described as being polar, mid-polar or non-polar/a-polar.

Like Dissolves Like

Analysis of non-polar compounds→Non-polar columnAnalysis of polar compounds→Strongly polar column

What do the numbers mean?

Roughly speaking, a larger number equates to a higher polarity column

i.e. Rtx-1 is non-polar Rtx-5 is largely non-polar Rtx-35 is mid-polar Rtx-Wax is polar

Stationary phases

Type of Solid Phase	<u>Polarity</u>	Separation Characteristics	Application	<u>Temp Ramge</u> (approx.)
Dimethyl polysiloxane	Non-polar	Boiling point order	Petroleum, solvents, high boiling- point compounds	-60 to 360 °C
Phenylmethyl polysiloxane	Non-polar to Mid-polar	Phenyl groups retain aromatic compounds	Perfumes, environmental compounds, aromatic compounds	-60 to 340 °C
Cyanopropyl phenol	Mid-polar to Strongly- polar	Effective separation of oxygenates and isomers	Agricultural chemicals, PCBs, oxygenates *not suited to some detectors (NPDs)	-20 to 280 °C
Trifluoropropyl methyl polysiloxane	Mid-polar to Strongly- polar	Specifically retains halogenated compounds	Halogenated compounds, polar compounds, solvents	-20 to 340 °C
Polyethylene glycol	Strongly polar	Strong retention of polar compounds	Polar compounds, solvents, perfumes, fatty acid methyl esters (FAMEs)	40 to 250 °C

Stationary phases

🕀 SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 2

Temperature considerations

All columns have temperature limits to prevent damage. The details of the limits are on the column box.

Where two temperature limits are stated, these refer to the **isothermal** and **programmed** limits.

Overheating a column causes stationary phase damage, increasing **column bleed** and reducing separation performance.

As columns age, the column bleed starts to increase. **Conditioning** can improve things, but eventually columns have to be replaced.

🕀 SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 2

Temperature considerations

All columns have temperature limits to prevent damage. The details of the limits are on the column box.

Where two temperature limits are stated, these refer to the **isothermal** and **programmed** limits.

Overheating a column causes stationary phase damage, increasing **column bleed** and reducing separation performance.

As columns age, the column bleed starts to increase. **Conditioning** can improve things, but eventually columns have to be replaced.

Summary

Shimadzu UK Theory & Key Principles Series – GC Session 2

Summary

- We can categorise GC columns into two types: packed and capillary (or open tubular)
 - Packed columns contain a packing material made of a porous solid or a liquid-coated solid
 - Capillary columns are hollow tubes with coatings supported on the inside wall of the column
- Capillary columns, specifically WCOT, are utilised far more in modern systems as they give a higher resolution
- Capillary columns have 4 key properties:
 - Length doubling the length gives small improvements in separating power, but increases run-time
 - Inner diameter a narrower i.d. provides a much higher resolution but can hold less sample
 - Film thickness a thicker film retains compounds for longer, so is good for analysis of more volatile compounds
 - Phase chemistry the make-up of the inner-coating defines how compounds will separate
- Phases for WCOT columns are described based on their polarity, from non-polar to polar.
 - A more polar phase often has a lower maximum temperature, so choosing a suitable phase can be tricky
 - These are a wide range of column phases available use literature examples to help guide your choice!

SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 2

Next time

The next session will be on...

The Split/Splitless Inlet

This will cover:

- The difficulties of getting a sample onto the analytical column
- The different method parameters and what they all mean
- Why using split mode is the easiest & best option
- How and when to use splitless mode

Shimadzu UK e-News

Join our e-News mailing list today!

Benefits of joining:

- Be entered into our prize draws & competitions
- Find out about our latest webinars, workshops & events
- Receive exciting information about the latest analytical technology & application notes

Look for the link in our follow-up email or go to www.shimadzu.co.uk and click on e-News

SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 2

Shimadzu UK webinars

Please visit our website to check out our other webinar sessions that are open for registration or are available on demand:

www.shimadzu.co.uk/webinars

Please send any questions to gc@shimadzu.co.uk

Excellence in Science

Contact Details

www.shimadzu.co.uk

info@shimadzu.co.uk

01908 552209

Shimadzu UK Limited