

Hydrogen as a GC carrier gas for PCDD/Fanalysis with *Agilent 7010* MS-MS systems: Implementation and Evaluation

Frank Neugebauer Eurofins GfA Lab Service

15 October, 2020

DE.2529282407

Frank Neugebauer H₂ as GC carrier Gas for PCDD/F-analysis

x.y = 0...4: x+y>0

1

- (1) Introduction
- (2) Detector comparison
- (3) First experiences with H₂
- (4) Final method
- (5) Validation on real samples
- (6) Long term experience
- (7) adverse effects of H₂
- (8) Conclusions
- (9) About risks?

He 7010A vs. 7000C (routine column) H₂ 7010A (routine column) H₂ 7010A (improved GC column)

Expectations

- Advantage: reduction in analysis time
 - Different properties of H₂; Van Deemter-Curve (interaction of density, diffusion coefficient and viscosity, higher average linear velocity: above 40cm/sec)
- Advantage: reduction in costs
 - Independence from future helium shortages and raising He price
- Disadvantages: adverse effects of H₂
 - expected reduction of instrument sensitivity
 - Reactions due to Hydrogen in GC and MS system?
 - Safety issues

Use of Agilent 7010 Triple Quadrupole Ion Source

- new source design/electronics → lower iDLs / higher sensitivity
- → Possibility to compensate for hydrogen-related decrease in system performance in order to maintain LOQs needed for analyzing dioxins (and many other parameters...) in food/feed samples

- **Remark:** EU food/feed regulations allow for use of GC-MS/MS (TripleQuads) COMMISSION REGULATION (EU) 2017/644; COMMISSION REGULATION (EU) 2017/771
 - 1.3. 'Confirmatory methods' means methods that provide full or complementary information enabling the PCDD/Fs and dioxin-like PCBs to be identified and quantified unequivocally at the maximum or, in case of need, at the action level. Such methods utilise gas chromatography/high resolution mass spectrometry (GC-HRMS) or gas chromatography/tandem mass spectrometry (GC-MS/MS).

Analysis of PCDD/F in food/feed samples

- 17 PCDD/F congeners; method for supervision of food/feed acc. to EU regulatory limits
- *Example:* pork meat >2% fat: maximum level (limit value) for sum of dioxins and furans (WHO(2005)-PCDD/F TEQ (upper-bound)) 1.0 pg WHO-TEQ / g fat.

• Theoretical calculation example:

• Starting point

- Routine PCDD/F method
- Isotope dilution, 16 internal ¹³C-standards
- VF-Xms column 60m * 0.25 mm i.D * 0.25 μm df; He
- Agilent 7000C detector

Remarks

- On the following slides, focus is set on 2,3,7,8-TCDD being as well a typical example for the results as one of the most important PCDD/Fs
- Limit of Quantifications (LOQs) are discussed as iLOQs, based on Signal to Noise Ratios (SNR)

- (SNR 10:1); n=10
 - 2,3,7,8-TetraCDD (pg/inj.) Remark:

0.025 +-26%0.006 +-11%better for PCDD/F7000C acceptable; used e.g. for PCBs, also as backup for PCDD/F

7010

Range (pg μL⁻¹)
 0.007- 40
 0.002 - 40
 could be expected
 ;)

^(*) approx. 20 times larger peak areas; much better signal quality at low concentrations below \approx 0.008 pg µL⁻¹

7000C

Performance of 7010 ion source approximately by F ≈ 3 - 4 better compared to the 7000C ion source

Stability (intensities, spectra) \approx 5 days after carrier gas switch; final stability after 2-4 weeks \rightarrow Stabilisation phase recommended

iLOQ of 2,3,7,8-TCDD (SNR 10:1) •

- 7000C, He: •
- 7010A, He: •
- 7010A, H2, first trial:
- Retention:
- Peak separation: •

0.006

0.025

- 0.010 ... 0.012
- 16 min vs. 23 min
- (see below)

equivalent

(3) MS1 Mass spectra

- Similar mass spectra
- Ion ratios mainly the same
- Fragmentation pattern different only to a minor degree

(4) Next step: 40m GC column & validation

VF-Xms 60m * 0.25 mm i.D * 0.25 μ m df \rightarrow 40m * 0.18 mm * 0.18 μ m^(*)

- **iLOQ** 2378-TetraCDD (SNR)
 - ≈ 0.010 pg on column (lowest cal.point) critical / still about the same as initially
 - (lowest cal. Point = SNR 10...15:1)
- Linearity (RRF):
 - critical at lowest cal.point (Tetras only) RSD (2378-TetraCDD) 12.5%^(**)

^(*) Agilent method translator
 ^(**) highest RSD of all compounds

GC separation test solution containing critical TetraCDD/F congeners

carrier gas		Не	H2	
column		VF-Xms 60*0.25*0.25	VF-Xms 40*0.18*0.18	
Analyte (n=8)		separation (% valley)	separation (% valley)	
TetraCDD	1237/1238 and 1379	10%	36%	
	1379 and 2378	20%	15%	US
TetraCDF	1249/2347 and 1279/2348	15%	18%	
	1279/2348 and 2378	20%	38%	
HexaCDD	123478 and 123678	10%	2%	
	123467 and 123789	24%	11%	
HexaCDF	123478 and 123678	3%	0,4%	CO

US EPA1613B: ≤ 25%

COMMISSION REGULATION (EU) 017/644: ≤ 25%

• Reduction in *method* LOQ on average for all congeners

- (as compared to original routine LOQs)
- - 35%

	•	Prod	luctiv	vity
--	---	------	--------	------

	acquisition time			productivity			
	min	hours	%	reduction	runs/d	capacity %	increase
He	53.0	0.88	100		27	100%	
H2	34.5	0.58	65	-35%	41	152%	52%

(5) Validation: comparison of real sample results

• PCDD/F-measurements: He (7000C) = routine and H_2 (7010A)

- 167 Food/feed samples (reflecting various matrices; randomly chosen)
 - Eggs, egg powder, spices, milk, yoghurt, milk powder infants, fat (powder and oils from plant or animal), feed (oils and powders, plant or animal, urea), mineral feed (copper sulphate, trace element powder), meat meal, different kind of fish and seafood, poultry (fat, meat, muscle), whey powder, feather meal
- Evaluation
 - Comparison of results for both measurements = data pairs.
 - H2: more positive results \rightarrow different number of data pairs per congener and sample
 - Evaluation only of data sets with positive results for both systems (He / 7000C and H2 / 7010)
- Criterion
 - correlation of results for all analytes between measurements in He and H₂systems demonstrating equivalency

 \rightarrow y (slope) = 0.9 x - 1.1 x at reasonable correlation coefficient (R² = 0.8 - 1)

All data pg/sample; only data sets from data pairs with positive results for both systems (He and H₂)

Correlation of RR between the He- and the H₂-system

¹³C₁₂-2,3,7,8-TetraCDD recovery %

Recent Advances in the Routine Analysis of Dioxins Live Webcast. 15 October, 2020

DE.2529282407

Review after 5 months and approx. 3000 injections

Stability and robustness

- Precision constant; Linearity stable;
- RRFs stable (n = 150); RRFs H_2 constant and equivalent to He
- Reference samples: accuracy OK; Blanks OK (... more detects)
- GC separation stable (2378-TetraCDD overlap to other congeners 15 % →17.5 %)

iLOQ (2,3,7,8,TetraCDD): 0,012 pg \rightarrow 0,016 pg still good performance

after 5 years and thousands of routine samples

- More instruments, all kind of samples run under routine workload
- Stable and without specific technical issues
- Performance and maintenance comparable to Helium machines (more maintenance due to more throughput)
- Present iLOQs (2,3,7,8-TCDD) calculated from signal/noise-ratio:
 - H₂ 0,023 pg; He 0,006 pg
 - Sensitivity settled, but fit for purpose and technically acceptable

Regarding costs:

• Gas price for He appears to be $\approx \geq 5$ times higher than for H2

- Distortion of spectra present but only to some degree
- Results only in intensity loss due to registration of less target analyte molecules

Dechlorination products formed in the injector?

- Formation of PCDD/Fs of lower chlorination degrees
- Indistinguishable from original analytes

• **> Dechlorination experiment:** Worst case = native OctaCDF and OctaCDD

- PCDD/Fs of the highest chlorination degree may most likely form lower chlorinated PCDD/Fs
- Mainly **Non-2,3,7,8**-congeners observed
- 2,3,7,8-congeners formed by dechlorination of OcCDD/F (*):
 - Te-HxCDD/F: < 0.5 % (moderately negligible)
 - HpCDF: 1234678-HeptaCDF: 3.3 %; 1234789-HeptaCDF: 2.7 %
 - HpCDD: 1234678-HeptaCDD: 4.0 %;

 $^{(\ast)}$ also true for $^{13}\text{C-OcCDD/F}$

- Might prove to be important especially for pattern recognition and congener group analysis
- For TEQ calculations: no significant influence observed on sample data H2 vs. He Still: be careful! It cannot be excluded that high relative Hexa- and HeptaCDD/F concentrations may result in overestimation of results due to Tetra-/Penta-formation → check for dechlorination in samples near / above limit values

- GC Performance equivalent to classical analytical systems; same results for real samples under H₂ and He
- Sensitivity losses under H₂ approximately compensated by use of the 7010 ion source; performance (validation; new quipment) stable; performance reduction under routine conditions and after 5 years acceptable
- In combination with different column run time substantially decreased;
 +52 % productivity;
- Carrier gas cost saving vs. He
- Frequent carrier gas alternation not recommended
- Dechlorination, but assumably not relevant for majority of cases

- Potentially explosive (4 % to 75 % by vol. in air at atmospheric pressure)
 - 4 % will hardly be reached in air ←high diffusion coefficient (0.61 cm²/s in air)
- Is there a risk in using Hydrogen?
 - NO ... IF you invest in
 - H₂ oven sensor and room sensor, connection of vent lines to air exhaust, removal of loose covers (for safety reasons)
 - Time ... considering that you might not want to start up your MS source whilst having H₂/atmosphere mixture within the vacuum system
- ... otherwise ...

DE.2529282407

This work would not have been possible without all those people

LIVE WEBCAST

Recent Advances in the Routine Analysis of Dioxins in Food and Environmental Samples Thursday, October 15, 2020 at 10am EDT | 3pm BST | 4pm CEST

Eurofins:

Susann-Cathrin Lang (now with Agilent ©), Judith Söhler, Yelko Rodriguez-Carrasco, Felix Focke, Robert Gatermann

Agilent Technologies:

Jörg Riener, Thierry Faye, Roland Weber, Sven Kranz, Eddy Enright, Georg Kneer, Therry Sheehan Questions?

Frank Neugebauer@eurofins.de Neulaender Kamp 1a D-21079 Hamburg Germany +49 40 49294 5801