

"Quō vādis POPs testing?"

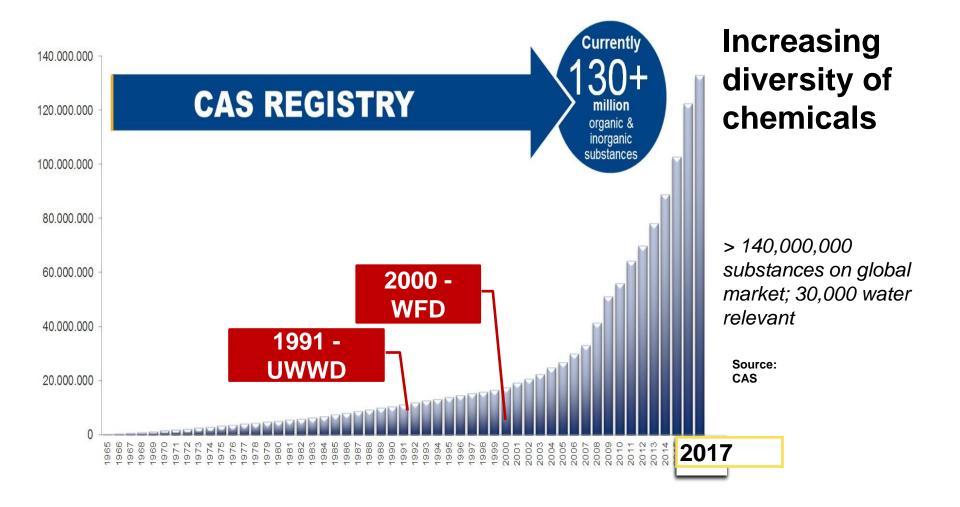
Dr. Peter A. Behnisch, BioDetection Systems, Amsterdam

- State of the art POPs analysis
- Combi screening & confirmative testing
- Dioxin International Food Crisis & their Costs
- > Total PFAS by biological & chemical analysis
- > POPs in consumer products
- Human Biomonitoring
- Quo Vadis POPs testing ?

BioDetection Systems B.V. (BDS)

BioDetection Systems B.V. ("BDS") is a

- Amsterdam based ISO 17025 accredited service laboratory
- International approved for dioxins/PCBs analysis in environmental, food/feed and human biomonitoring
- Bioanalysis for Hormones & Endocrine Disrupting Chemicals (e.g., plastic additives, pesticides, PFAS)
- Non-animal alternatives testing laboratory (OECD TG 455, 456 and 458 approved)



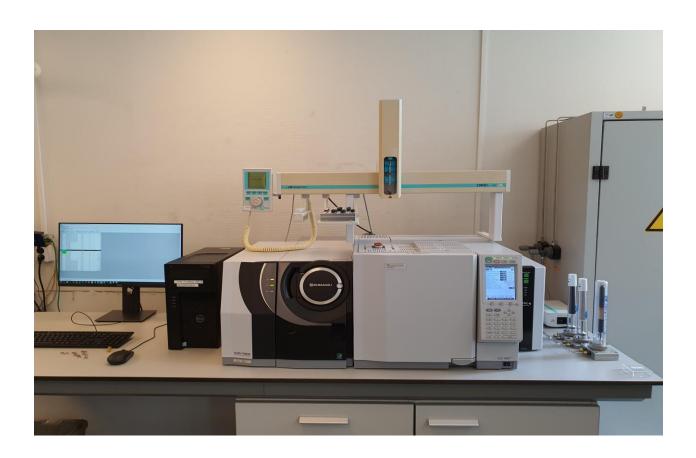
CRO for safe & healthy food

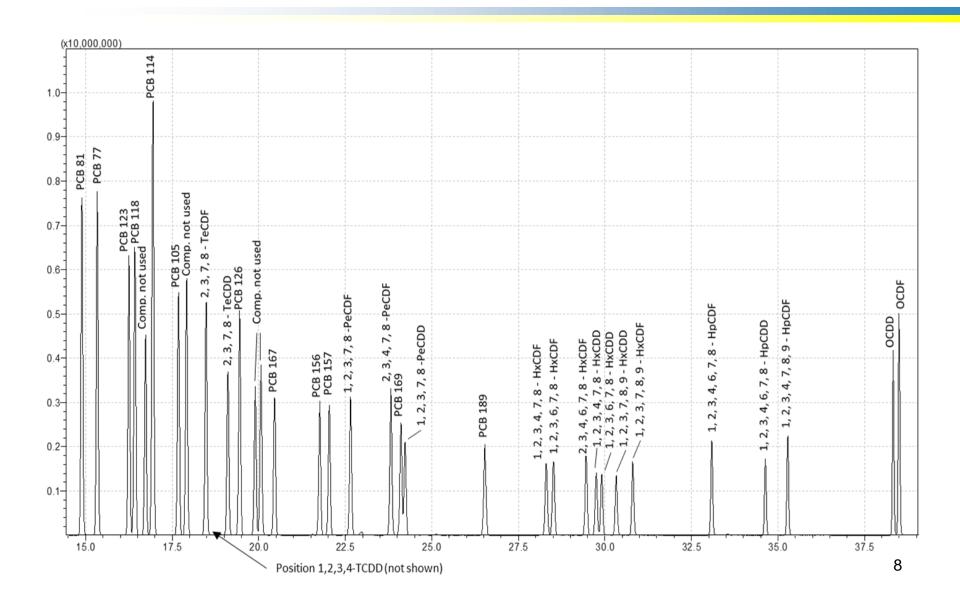
MISSION"Know more about the Unknown"

- State of the art POPs analysis
- > Combi screening & confirmative testing
- Dioxin International Food Crisis & their Costs
- > Total PFAS by biological & chemical analysis
- > POPs in consumer products
- > Human Biomonitoring
- Quo Vadis POPs testing ?

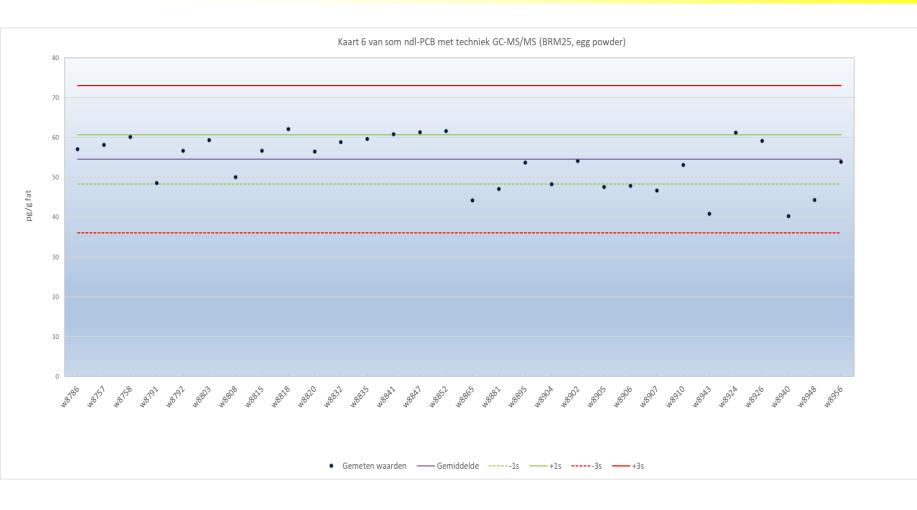
Automated extraction and clean-up of dioxins and PCBs in envi/feed/food

Speed extraction (Büchi)

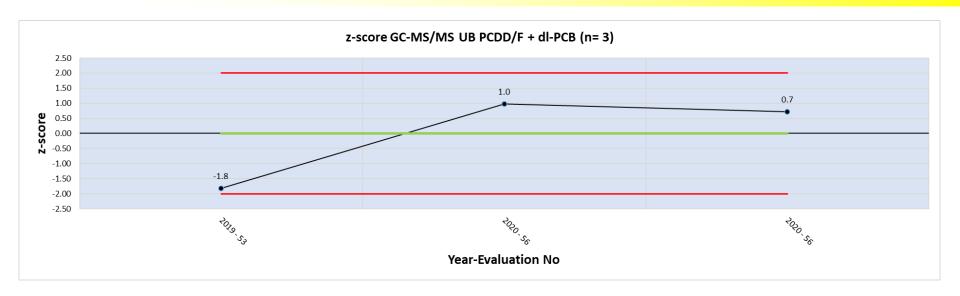

Automated Clean-ups


Our GC/MS/MS analysis by Shimadzu for dioxins and PCBs in feed/food

GC/MS-MS-TQ8050 (Shimadzu) since 2018



Our GC/MS/MS chromatogram for all required dioxins and PCB congeners


QA/QC GC/MS/MS analysis for dioxins and PCBs 1) Q-Chart for egg powder for NDL-PCBs

QA/QC GC/MS/MS analysis for dioxins and PCBs

3) Z-scores first 3 interlaboratory proficiency tests

	z-score G	GC-MS/MS UB PCDD/F + dl-	PCB (n= 3)						
No	Organiser	▼ Name Proficiency Test	Year - Evalution number	Sample	Matrix	▼ Z-score	 Upp€	Lowe	r Midd -
64	EU-RL	EURL-PT-POP_2001-FI	2019 - 53	Fish fillet	Food, fish (product)	-1.82	2	-2	0
74	EU-RL	EURL-PT-DPB-2003-FF	2020 - 56	PFAD	Feed, plant orgin	0.98	2	-2	0
75	EU-RL	EURL-PT-DPB-2003-FF	2020 - 56	Rapeseed Oil	Feed, plant orgin	0.72	2	-2	0

ISO 17025 scope of BDS

Annex to declaration of accreditation (scope of accreditation)

Normative document: EN ISO/IEC 17025:2017

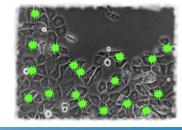
Registration number: L 401

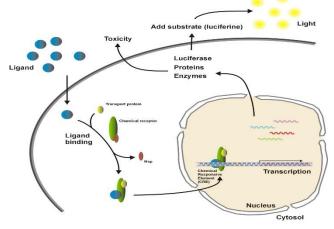
of Bio Detection Systems B.V. BDS Service Laboratory

This annex is valid from: 23-09-2020 to 01-11-2022

Replaces annex dated: 23-04-2020

No. Material or product		Type of activity¹	Internal reference number	Location	
2	Feeding stuffs, raw material for animal feeding stuffs, fats, oils, meat products, dairy products, eggs and fish products	Determination of the content of indicator PCB's; GC-MS/MS PCB 28, PCB 52, PCB 101, PCB 153, PCB 138, PCB 180 and the sum of these six PCB's	P-bds-161 Fats, oils, eggs, meat-, dairy- and fish products: Commission Regulation (EU) No 2017/644) Feeding stuffs and raw material for animal feeding stuffs: Commission Regulation (EU) No 2017/771)	A	
3	Feeding stuffs, raw material for animal feeding stuffs, fats, oils, meat products, dairy products, eggs and fish products	Determination of the content of dioxines, furans and dioxine-like PCB; GC-MS/MS 2.3.7.8-TCDD 1.2.3.7.8-PeCDD, 1.2.3.4.8-HxCDD, 1.2.3.4.6.7.8-HxCDD, 1.2.3.7.8-PeCDD 0CDD 2.3.7.8-PeCDF 1.2.3.7.8-PeCDF 1.2.3.7.8-PeCDF 1.2.3.7.8-PeCDF 1.2.3.4.7.8-PeCDF 1.2.3.4.7.8-PeCDF 1.2.3.4.7.8-PeCDF 1.2.3.4.7.8-PeCDF 1.2.3.4.7.8-HxCDF 1.2.3.4.7.8-HxCDF 1.2.3.4.7.8-HxCDF 1.2.3.4.8.7.8-HxCDF 1.2.3.4.8.7.8-HxCDF 1.2.3.4.7.8-PeCDF 1.2.3.4.8-PeCDF 1.2.3.4-PeCDF	p-bds-170 in-house methode Fats, oils, eggs, meat-, dairy - and fish products: Commission Regulation (EU) No 2017/644 Feeding stuffs and raw material for animal feeding stuffs: Commission Regulation (EU) No 2017/771	A	

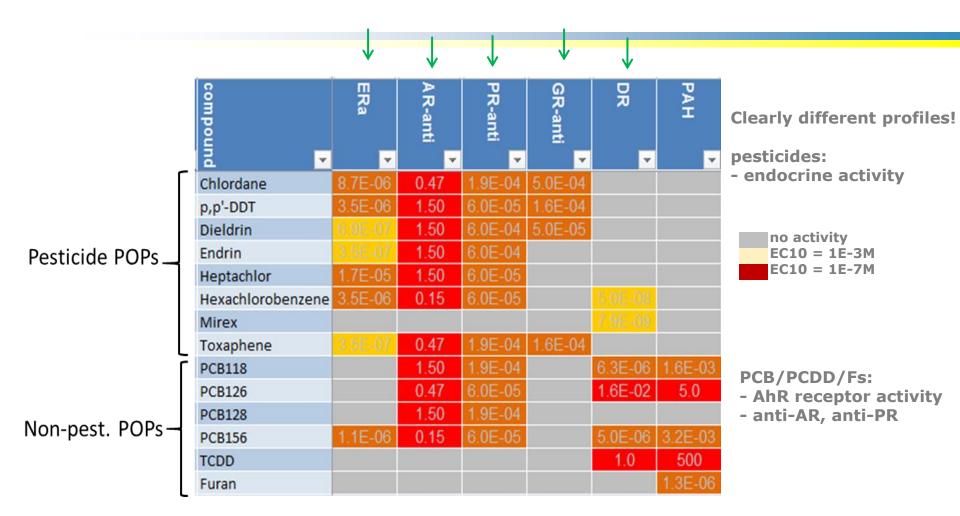



- > State of the art POPs analysis
- Combi screening & confirmative testing
- Dioxin International Food Crisis & their Costs
- > Total PFAS by biological & chemical analysis
- > POPs in consumer products
- > Human Biomonitoring
- Quo Vadis POPs testing ?

Robotic in vitro CALUX Screening

SEEDING

Dilution series (TCDD and sample)


EXPOSURE

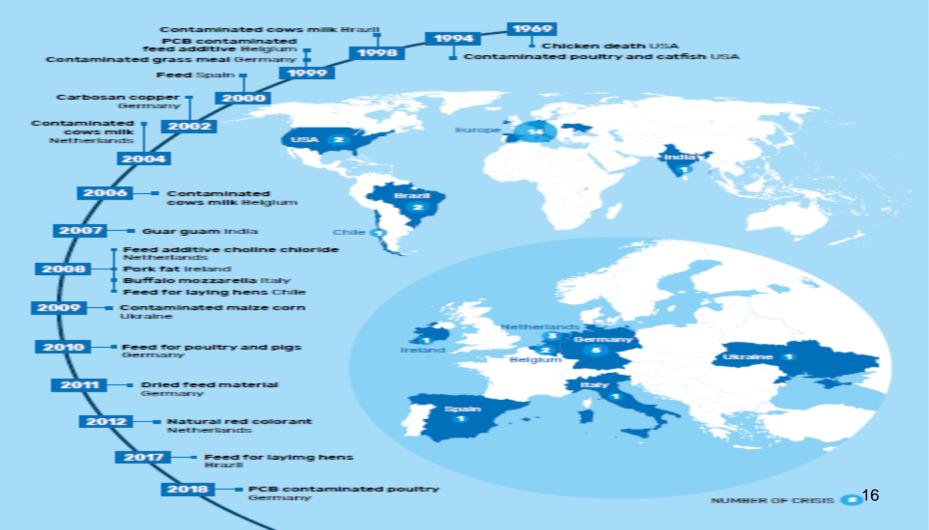
DETECTION

Ready-to-seed cells in 96/384-well format

In vitro toxicity profiling of POPs

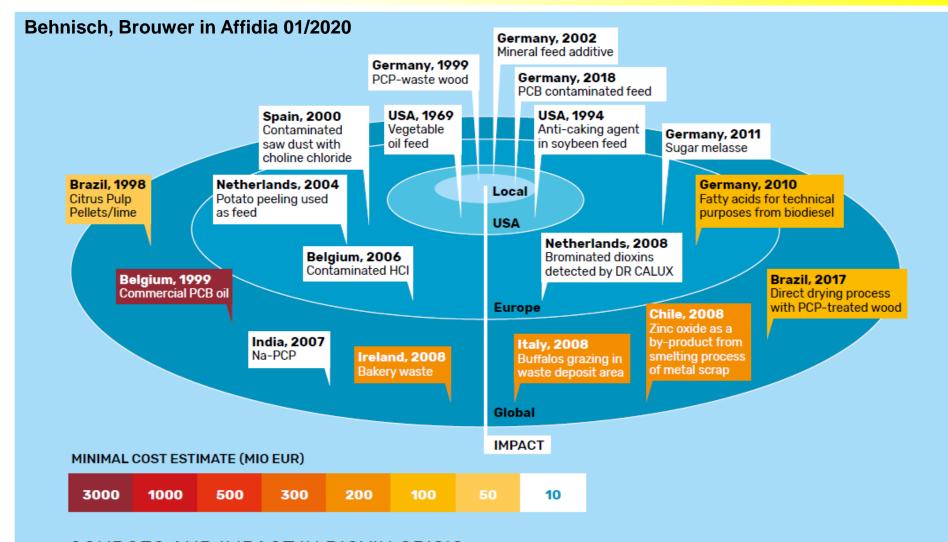
Values indicate relative potency (REP) values compared to the reference compound activity. Yellow -> red = increasing relative potency. Reference compounds: ERa; E2. AR-anti; flutamide. PR-anti and GR-anti; Ru486. DR; TCDD. PAH; Benzo-a-pyrene.

- > State of the art POPs analysis
- > Combinatorial screening & confirmative testing
- Dioxin International Food Crisis & their Costs
- > Total PFAS by biological & chemical analysis
- > POPs in consumer products
- Current international Dioxin hotspots
- > Human Biomonitoring
- > Quo Vadis POPs testing?



International DIOXIN food crisis

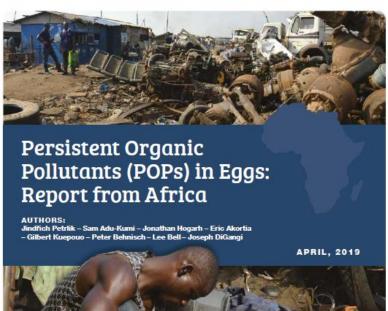
Behnisch, Brouwer in Affidia 01/2020


NON EXHAUSTIVE LIST OF GLOBAL DIOXIN CRISIS



SOURCES AND IMPACT IN DIOXIN CRISIS

Dioxin Egg monitoring surrounding incinerators: Zero Waste Europe report (2022): The True Toxic Toll

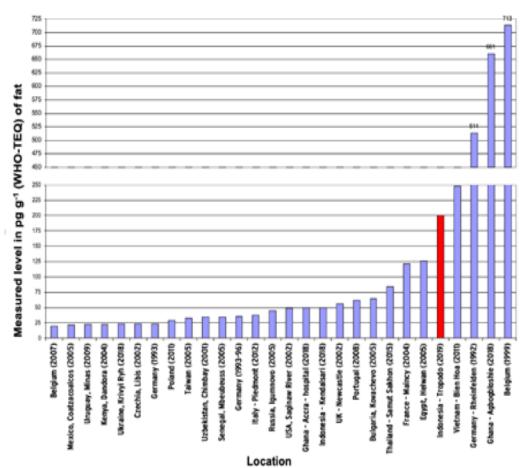


Results of biomonitoring research around waste incinerators - 2021

Dioxins & other POPs in chicken eggs at E-waste recycling sides in Africa (Arnika report 2019)

PCDD/F/PBDD/ F/DL-PCB-TEQ (pg TEQ/g fat)	Yaoundé -hospital	Accra – Agbogbl.	Accra - hospital	Kumasi - hospital	Accra- super- market	EU stand. /limit s
DR CALUX	9.6	840	56	5.2	1.2	
GC/HRMS	11.4	1150	63	2.6	0.56	5.00
Other POPs						
НСВ	1.4	25.1	3.63	0.76	< 0.2	-
PeCB	0.35	22.4	2.88	< 0.2	< 0.2	
6 PCB	30	168	7.8	< 1.2	< 1.2	40.00
sum HCH	2.5	< 0.6	< 0.6	< 0.6	< 0.6	
sum DDT	22	9.7	79	0.82	< 1.2	

Free range chicken eggs in Indonesia & World (Arnika 2019)



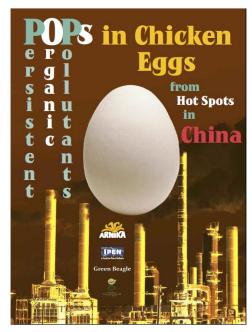
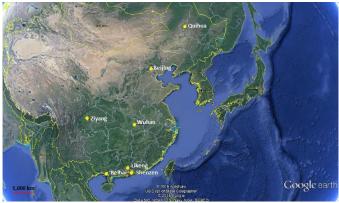


Figure 19: Dioxins measured in free-range chicken eggs from different locations in the world.

China: free range chicken eggs from several industrial hot spots (Arnika report 2015)


Beihei –metallurgic plant: 5-7 x EU Max

Likeng – Waste incinerator: 3 x EU Max

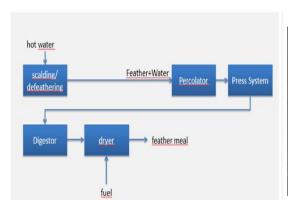
Quihua – PVC plant: 2 x EU Max

Shenzhen – Waste incinerator: above 1 x EU Max

Wuhan – waste incinerator: 1-7 x EU Max, with high PBDD/Fs levels

"This publication is part of Strengthening the capacity of pollution victims and civil society organisations to increase chemical safety in China"

China bans meat from Brazil (May 2015): intensive food screening by DR CALUX



Reason:	China Physicochemical Notification AQSIQ SIF 1001.
AQSIQ Notification:	DIOXIN
Product:	Chicken meat from the Industry Plant under SIF 1001 control.
Production	17, 18 and 29 th March 2015 : Health Certificates (IHCs) nº 01054/1001/15, shipped on 31/03/2015, nº 00896/1001/15, shipped on 20/03/2015,
dates involved:	16, 25 and 27 th April 2015 and 4, 5, 6, 7, 8 and 09 th May 2015: Health Certificates nº 02101/1001/15, shipped on 02/06/2015,
	8, 9, 13, 15, 16, 18, 19, 20 and 21 th May 2015: Health Certificates nº 02415/1001/15, shipped on 19/06/2015.

Fuel used in unsuitable process (contaminated).

Burning of fuel with the potential to generate dioxins.

Burning of used pallets disposed of treated wood, used for drying feathers. Method of drying feathers by direct heat.

BDS DR CALUX analysis:

- 2000 samples for Brazilian feed/food industry
- Less than 1% suspect in DR CALUX
- Caused by burning PCP contaminated pallets for drying chicken feathers, which are used as feed additive

Free range chicken eggs in Western Balkan Countries (Arnika report 2014)

Table 4: Summarized results of analyses for POPs and mercury for thirteen pooled free range chicken eggs samples and one cheese sample. There are also EU limit values for comparison. (Table continues on page 13.)

Locality	Podbrežje (Zenica)	Gračanica (Zenka)	Tetovo (Zenica)	Donja Gračanica (Zenka)	Donja Vraca (Zenica)	Divkoviči I (Tuz la)	Divkoviči II (Tuzla)	Plužine – Orah	Plužine – Seoce
Sample	ZEN 1	ZEN 15/1	ZEN 15/2 + ZEN 15/4	ZEN 15/3	ZEN 15/5	BiH-E-ot	BiH-E-oz	PLZ- E1+E2+E3	PLZ- E4+E5+E(
Fat content	11.15	15.7	14.1	11.5	15.6	12.3	15.6	12.5	10.6
PCDD/Fs (pg WHO TEQ g1 fat)	1.93	2.40	5.57	4.73	3.86	2.51	NA	NA	NA
DL PCBs (pg WHO TEQ g1 fat)	5.15	1.55	3.09	3.56	3.75	1.56	NA	NA	NA
Total PCDD/F+DL PCBs (pg WHO TEQ g* fat)	7.08	3.95	8.66	8.29	7.61	4.07	NA	NA	NA
PCDD/Fs and DL PCB (DR CALUX); (pg BEQ g* fat)	NA	NA	12	NA	NA	NA	6.5	0.98	NA
PCDD/Fs (DR CALUX); (pg BEQ g° fat)	NA	NA	8.8	NA	NA	NA	43	0.34	NA

- > State of the art POPs analysis
- > Combinatorial screening & confirmative testing
- > Dioxin International Food Crisis & their Costs
- > Total PFAS by biological & chemical analysis
- > POPs in consumer products
- > Current international Dioxin hotspots
- > Human Biomonitoring
- > Quo Vadis POPs testing?

Interlaboratory study of various reference materials

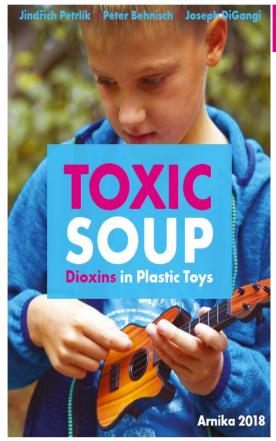
- Interlaboratory study with 4 food samples (see for more info at Uhlig, Simon, Frost, QuoData, Germany, 2015):
 - Calf liver spiked
 - Wild pig unspiked, but from a contaminated area
 - Fish muscle
- Several feed samples from LHL:
 - Calf liver un-spiked
 - Potato
 - Gras
 - Feed
 - Compost

PFOA-EQ (CHEM) and PFOA-BEQ (PFAS CALUX) values of a wild pig sample

PFAS	Conc. ng/g	REP-factors PFAS CALUX	PFOA-EQ	% Kongener/ PFAS-EQ
PFPeA	2,5	0,0093	0,02	0,0
PFHxA	0	0,041	0,0	0,0
PFHpA	4,2	0,24	1,0	1,0
<u>PFOA</u>	13,2	1	13	13,5
PFNA	24,6	0,1	2,5	2,5
PFDA	18,1	0,06	1,1	0,5
PFBS	2,3	0,025	0,1	0,1
PFHxS	2,5	3,2	8	8,2
<u>PFOS</u>	358	0,2	<u>72</u>	<u>73</u>
SUM ng PFOA-EQ/g (CHEM)			98	
SUM ng PFOA-BEQ/g (PFAS CALUX)			1600	26

Screening & chemical analysis of total PFAS in food PFOA-EQ vs PFOA-BEQ [in ng/g]

Sample	ng PFOA-EQ/g (CHEM)	ng PFOA-BEQ/g (PFAS CALUX)	Ratio BIO/CHEM	% PFAS/PFOA -EQ (CHEM)
Wild pig	98	1600	16	PFOS 73%
Calf liver spiked	120	130	same range	PFHxS 53%
Calf liver	3,5	580	160	PFOS 60%
Fish	11	11000	1000	PFOS 61%, PFOA 34%
Potato	110	500	4,5	PFOS 30%, PFOA 70%
Gras	640	140	0,22	PFHxS 80%
Feed	320	120	0,38	PFHxS 85%
Compost	21	370	18	PFOA 87%



- > State of the art POPs analysis
- Combinatorial screening & confirmative testing
- > Dioxin International Food Crisis & their Costs
- > Total PFAS by biological & chemical analysis
- > POPs in consumer products
- > Current international Dioxin hotspots
- > Human Biomonitoring
- > Quo Vadis POPs testing?

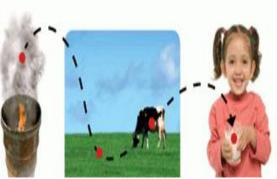
Toys & consumer products with high levels of brominated dioxins (Arnika report 2018)

Country / Sample	Туре	PBDD/Fs (pg TEQ/g) ¹	DR CALUX (pg TEQ/g)	PBDEs (ug/g) ²	HBCD (ug/g)	TBBPA (ug/g)
Argentina ARG_04	Rubik's-like cube	727	1,200	708	1	na³
Brazil BRZ-T-7A	Toy, car	750	590	169	0.2	8
Cambodia KAM-H-1	Hair diadem	1,950	1,500	358	0.3	10
Canada CA-H-1C	Hair rack	1,500	1,300	718	< 0.01	1
Czechia JI_11	Cube	2,159	17,000	2,614	91	na³
Czechia SIX_02	Hairclip	60	210	1,623	8	na³
France FR-T-3	Toy revolver	2,058	520	1,077	1	314
Germany D-TO7	Key fob	3,821	820	511	2	307
India IND_11	Rubik's-like cube	690	1,300	593	2	na³
Japan JP-O-1	Smart phone holder	1,200	560	693	0.5	37
Nigeria NIG_06	Rubik's-like cube	860	4,800	1,780	9	na³
Nigeria NIG_11	Rubik's-like cube	56	370	1,218	8	na³
Portugal PT-T-10a	Toy small guitar	1,137	270	3,318	2	37

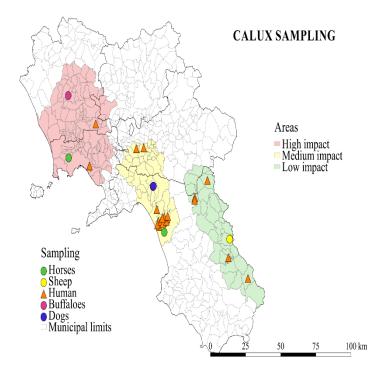
OBUND

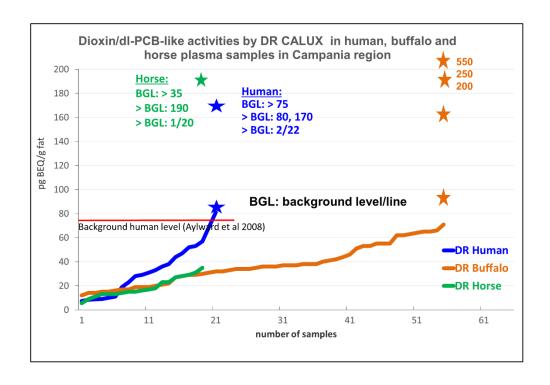
PFAS in food packaging by chemical and biological analysis (Arnika report 2021)

OIL-BEADING TA	1							
SAMPLE ID	TOF (mg/kg dw)	TOF (µg/ dm2 dw)	6:2 FTOH (ng/g)	6:2 FTS (ng/g)	10:2 FTS (ng/g)	% identified fluorine	TTR - FITC-1 activity (µg PFOA/g)	FITC-T4 LOQ
DE-PAP-KFC-17a	770	247	528	<l0q< td=""><td><l0q< td=""><td>0.047</td><td>341</td><td>26</td></l0q<></td></l0q<>	<l0q< td=""><td>0.047</td><td>341</td><td>26</td></l0q<>	0.047	341	26
FastF-FR-5	700	215	706	<l0q< td=""><td><l0q< td=""><td>0.068</td><td>220</td><td>29</td></l0q<></td></l0q<>	<l0q< td=""><td>0.068</td><td>220</td><td>29</td></l0q<>	0.068	220	29
FastF-FR-3	670	224	192	39.5	104	0.033	NA	-
DE-PAP-NRDS-19a	640	291	234	<l0q< td=""><td><loq< td=""><td>0.025</td><td>NA</td><td>-</td></loq<></td></l0q<>	<loq< td=""><td>0.025</td><td>NA</td><td>-</td></loq<>	0.025	NA	-
FastF-FR-2	530	351	219	<l0q< td=""><td><l0q< td=""><td>0.028</td><td>NA</td><td>-</td></l0q<></td></l0q<>	<l0q< td=""><td>0.028</td><td>NA</td><td>-</td></l0q<>	0.028	NA	-
DE-PAP-DDNT-20a	510	270	194	<l0q< td=""><td><loq< td=""><td>0.026</td><td>NA</td><td>-</td></loq<></td></l0q<>	<loq< td=""><td>0.026</td><td>NA</td><td>-</td></loq<>	0.026	NA	-
FasF-UK-5a	480	157	16.9	<l0q< td=""><td><loq< td=""><td>0.0024</td><td>39</td><td>19</td></loq<></td></l0q<>	<loq< td=""><td>0.0024</td><td>39</td><td>19</td></loq<>	0.0024	39	19
CZ-FCM-KFC-06	480	134	634	<loq< td=""><td><loq< td=""><td>0.090</td><td>69</td><td>33</td></loq<></td></loq<>	<loq< td=""><td>0.090</td><td>69</td><td>33</td></loq<>	0.090	69	33
CZ-FCM-MCD-01b	470	176	335	<l0q< td=""><td><loq< td=""><td>0.048</td><td>52</td><td>16</td></loq<></td></l0q<>	<loq< td=""><td>0.048</td><td>52</td><td>16</td></loq<>	0.048	52	16
FastF-UK-2	440	177	<loq< td=""><td><l0q< td=""><td>34.4</td><td>0.0050</td><td>60</td><td>30</td></l0q<></td></loq<>	<l0q< td=""><td>34.4</td><td>0.0050</td><td>60</td><td>30</td></l0q<>	34.4	0.0050	60	30
CZ-FCM-BB-01b	400	400	345	<l0q< td=""><td><loq< td=""><td>0.059</td><td>NA</td><td>-</td></loq<></td></l0q<>	<loq< td=""><td>0.059</td><td>NA</td><td>-</td></loq<>	0.059	NA	-
FastF-UK-4	390	125	248	<l0q< td=""><td><loq< td=""><td>0.043</td><td>NA</td><td>-</td></loq<></td></l0q<>	<loq< td=""><td>0.043</td><td>NA</td><td>-</td></loq<>	0.043	NA	-
DE-PAP-MCD-26	370	159	132	<l0q< td=""><td><l0q< td=""><td>0.024</td><td>180</td><td>26</td></l0q<></td></l0q<>	<l0q< td=""><td>0.024</td><td>180</td><td>26</td></l0q<>	0.024	180	26



- > State of the art POPs analysis
- > Combinatorial screening & confirmative testing
- > Dioxin International Food Crisis & their Costs
- > Total PFAS by biological & chemical analysis
- > POPs in consumer products
- Human Biomonitoring
- Quo Vadis POPs testing ?




Blood testing by screening CALUX and chemical analysis

Blood testing for dioxins/DL-PCB by chemical analysis

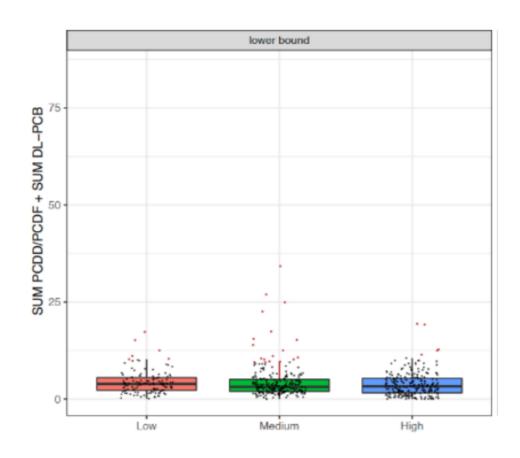
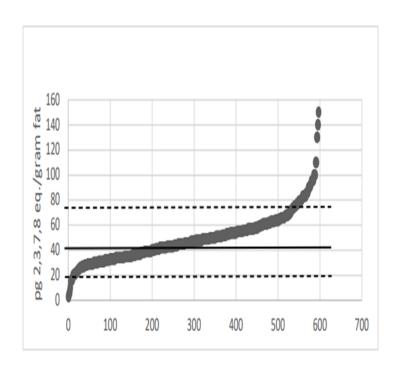



Figure 14. Sum of PCDD/PCDF + sum of DL-PCB expressed as pg WHO-TEQ/g lipids among the three different impact areas: low, medium and high impact area.

Blood testing for dioxins/DL-PCB by DR CALUX

Figure 18. Yardstick-based representation of DR CALUX® results in study sample plasma analyzed. DR CALUX® bioassay results are lined up from lowest to highest obtained result expressed in pg 2,3,7,8-TCDD BEQ/g fat. Back line represents the mean value of 44.89 pg 2,3,7,8-TCDD BEQ/g fat. The top line indicates the

Figure 19. Frequency distribution of DR CALUX® results expressed as pg BEQ/g fat.

DNA marker vs chemical PCDD vs CALUX panel

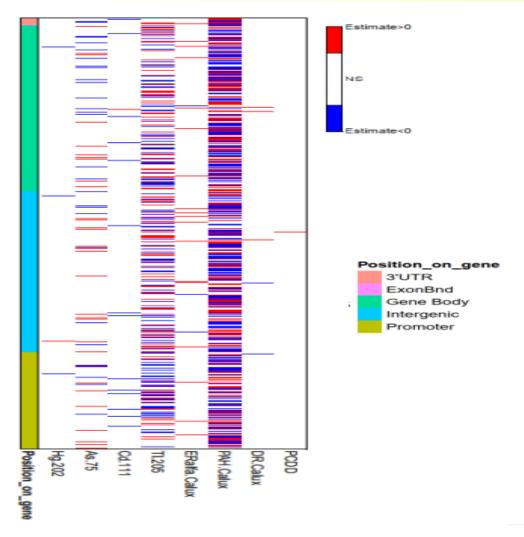


Figure 31. Heatmaps of robust linear multiple regression model

QUO VADIS POPs testing?

- Monitoring of POPs by combining in vitro CALUX screening and chemical analysis for a safer feed & food!
- Providing robust, easy, high capacity and low-cost state-of-the art de-risking solutions
- Prevent consumer scares (e.g. plastic) of new POPs through monitoring of sources, food and human uptake
- POPs & EDCs AND their toxic pathways as safer umbrella to make the ZERO pollution Green Deal strategy a step further to reality.....