Evaluation of Ultra High Resolution Mass Spectrometer in Targeted Forensic Screening Method for Urine Analysis in Comparison to Immunoassay and GC-MS Techniques

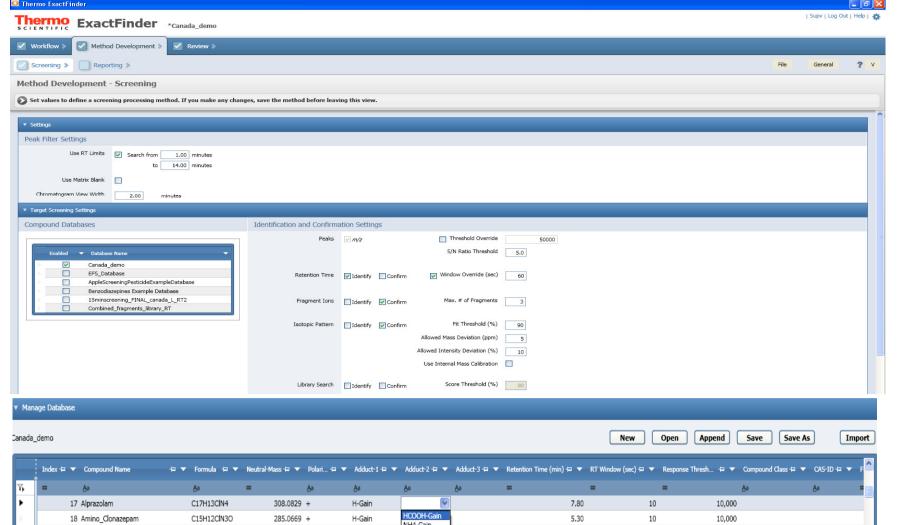
Marta Kozak¹, Bénédicte Durez¹, Maggie Lee², Ernest Wang², Cristina Stefan²

¹Thermo Fisher Scientific, San Jose, CA; ² Clinical Laboratory and Diagnostic Services, Center of Addiction and Mental Health, Toronto, ON

Overview

Purpose: To evaluate Exactive TM ultra high resolution mass spectrometer in targeted forensic screening applications for urine analysis.

Methods: Urine samples were diluted 20 times with DI water and analyzed with 15-minute gradient LC method. Full scan data followed by all ion fragmentation spectra were collected in polarity switching experiment.


Results: Data collected with Exactive screening method correlates very well with immunoassay, Remedy and GC-MS data. More compounds and metabolites were detected with LC-MS method when compared to the other two analytical techniques.

Introduction

Fast screening methods allowing for quick and confident identification of unlimited number of compounds in urine samples with capability of retrospective data analysis are required in forensic toxicology. Ultra high resolution mass spectrometers are the only mass spectrometry platforms meeting these expectations. Among those instruments, the Exactive with Orbitrap[™] mass analyzer stands out with up to 100K resolution for data specificity and high quality of all ions fragmentation (AIF) spectra collected in higher-energy collisional dissociation (HCD) cell.

Sample preparation procedure is a critical step in screening applications. Sample processing methods in which urine is simply diluted can detect a greater number of compounds and metabolites than those methods using SPE or LLE extractions.

FIGURE 5. ExactFinder processing method and database.

FIGURE 8. Compounds detected with different techniques –data for selected samples

Sample	Remedy and Immunoassay	GC-MS	LC-MS
#1	 Dextrometorphan Doxylamine Bupriopion Ephedrione 	 Dextromethorphan Doxylamine Bupriopion Ephedrine Phenylpropanolamine Propranolol Nor-buprenorphine Trazodone 	 Dextromethorphan Doxylamine Bupriopion Ephedrine Phenylpropanolamine Propranolol Nor-buprenorphine Trazodone 1,3-Chlorphenylpiperazin Baclofen Acetaminophen Nicotine Glucuronide Ketamine
#2	•Ketamine	•Ketamine •Nor-ketamine	 Ketamine Nor-ketamine Cotinine Nicotine Nicotine Glucuronide Benzoylecgonine Caffeine
#3	 Ritalinic acid Trazodone Hydroxy risperidone EDDP Methadone Benzodiazepines 	 Ritalinic acid Trazodone Hydroxy risperidone EDDP Methadone 	 Ritalini acid Trazodone Hydroxy risperidone EDDP Methadone 7-Amino Clonazepam Norfluoxetine Acetaminophen 1,3-Chlorphenylpiperazin Diphenhydrazine Methylphenidate Cotinine Nicotine Caffeine
#4	•Codeine •Tramadol •Propoxyphene	•Codeine •Tramadol •Naproxen	 Codeine Tramadol Naproxen Desipramine Caffeine N-desmethyl-cis-tramado Tramadol Glucuronide
#6	 Methamphetamine MDMA Diphenhydramine Cocaine Methadone EDDP THC 	 Methamphetamine MDMA Diphenhydramine Cocaine Methadone EDDP Temazepam Benzoylecgonine 	 Methamphetamine MDMA Diphenhydramine Cocaine Methadone EDDP Temazepam Benzoylecgonine Aminoclonazepam MDA
#15	•Trazodone •Clonidine •Benzodiazepines	•Trazodone	 Trazodone Clonidine Oxazepan Hydroxy nordiazepam Naproxen
#16	•Fentanyl	FentanylCodeineNor codeine	 Fentanyl Codeine Codeine Glucuronide Nor codeine Glucuronide Nor codeine Glucuronide Nor fentanyl Acetaminophen Nicotine Nicotine Glucuronide Cotinine
#22	EthopropazineZuclopenthixolBenzodiazepines	EthopropazineZuclopenthixolPromethazine	 Ethopropazine Zuclopenthixol-OH Promethazine Lorazepam Glucuronide

Possibility of eliminating glucuronides hydrolysis by detection of conjugated metabolites allows faster data delivery.

Method

Sample Preparation

Mix 50 μ L of urine with 50 μ L of internal standard solution and 900 μ L of DI water. Vortex and transfer samples to an autosampler vial. Inject 20 μ L onto HPLC system.

Internal standard spiking solution containing 200 ng/mL of Hydromorphone-D6, 200 ng/mL of Methamphetamine-D5 and 500 ng/mL of Phenobarbital-D5 was prepared in 50% MeOH.

Hydromorphone-D6 and Methamphetamine-D5 were used as internal standards for positively ionized compounds, and Phenobarbital-D5 was used as internal standard for negatively ionized compounds.

LC method

The HPLC used is a Thermo Scientific Accela 600 pump with AccelaTM open autosampler. Mobile phases are 10 mM ammonium formate in water (A) and methanol (B), and acetonitrile:1-propanol:acetone (45:45:10) (C). The HPLC column used is a Thermo Hypersil GOLD PFP, 5 μ m, 100 x 2.1 mm run under the gradient shown in Figure 1. Divert valve is set to waste from 0 to 1.8 minutes and to mass spectrometer from 1.8 minutes to the end of the run.

FIGURE 1. HPLC gradient method

Start (min)	Sec	Flow (mL/min)	% A	%B	%C
0.00	60	0.50	98	2	
1.0	660	0.50		100	
12.0	60	0.75		100	
13.0	30	1.00			100
13.5	60	2.00	98	2	
14.5	30	0.50	98	2	

Mass Spectrometry

Compounds are detected on an Exactive high performance bench-top mass spectrometer equipped with an Orbitrap mass analyzer. A schematic diagram of the new Exactive Plus instrument is illustrated in Figure 2. A HESI probe was used as an ion source.

The instrument was operating in alternating positive and negative full-scan and all-ion fragmentation mode. Relevant scan and source parameters are shown in Figures 3 and 4.

19 Amino_Flunitrazepam C16H14FN3O 283.1121 + H-Gain H-Gain 6.10 10 10,000 20 Aminonitrazepam C15H13N3O 251.1059 + H-Gain N=Gain 5.26 10 10,000 21 Amitriptyline C20H23N 277.1830 + H-Gain - 9.30 10 10,000 22 Amlodpine C20H25CN2O5 408.1452 + H-Gain - 9.10 10 10,000 23 Amoxapine C17H16CN3O 313.0982 + H-Gain 8.80 10 10,000	
20 Aminonitrazepam C15H15N3O 251.1059 + H-Gain 5.26 10 10,000 21 Amitriptyline C20H23N 277.1830 + H-Gain 9.30 10 10,000 22 Amlodipine C20H25ClN2O5 408.1452 + H-Gain 9.10 10 10,000	
21 Amitriptyline C20H23N 277.1830 + H-Gain 9.30 10 10,000 22 Amlodipine C20H25CIN2O5 408.1452 + H-Gain 9.10 10 10,000	
23 Amoxapine C17H16ClN3O 313.0982 + H-Gain 8.80 10 10,000	
24 Amphetamine C9H13N 135.1048 + H-Gain 500 10 10 10 000	
25 Apomorphine C17H17N02 267,1259 + H-Gain Fragment 1 + Fragment 2 + Fragment 3 + Fragment 3 + Fragment 4 + Fragment 5 + Co	omment 🕀 🤜
26 Atenolol C14H22N2O3 266.1630 + H-Gain = = = An	
27 Baclofen C10H12CINO2 213.0557 + H-Gain 281.0707 274.1210 241.0523 0.0000 0.0000	
28 Benzoylecgonine C16H19NO4 289.1314 + H-Gain 250.0970 222.1021 121.0760 0.0000 0.0000 28 Benzoylecgonine C16H19NO4 289.1314 + H-Gain 135.0916 256.1242 227.0976 0.0000 0.0000	
20. Departmention 236.1242 224.1376 0.0000 0.0000 20. Departmention 211.0761 146.0708 224.1176 0.0000 0.0000	
121.0701 176.0705 224.1176 0.0000 0.0000 191.0856 117.0701 178.0779 0.0000 0.0000	
238.0627 294.0889 377.1257 0.0000 0.0000	
271.0631 297.0789 245.0477 0.0000 0.0000	
91.0545 119.0856 0.0000 0.0000 0.0000	
191.0856 219.0807 237.0913 0.0000 0.0000	

133.0649

116.0622

150.0912

0.0000

151.0305

168.1017

190.0865

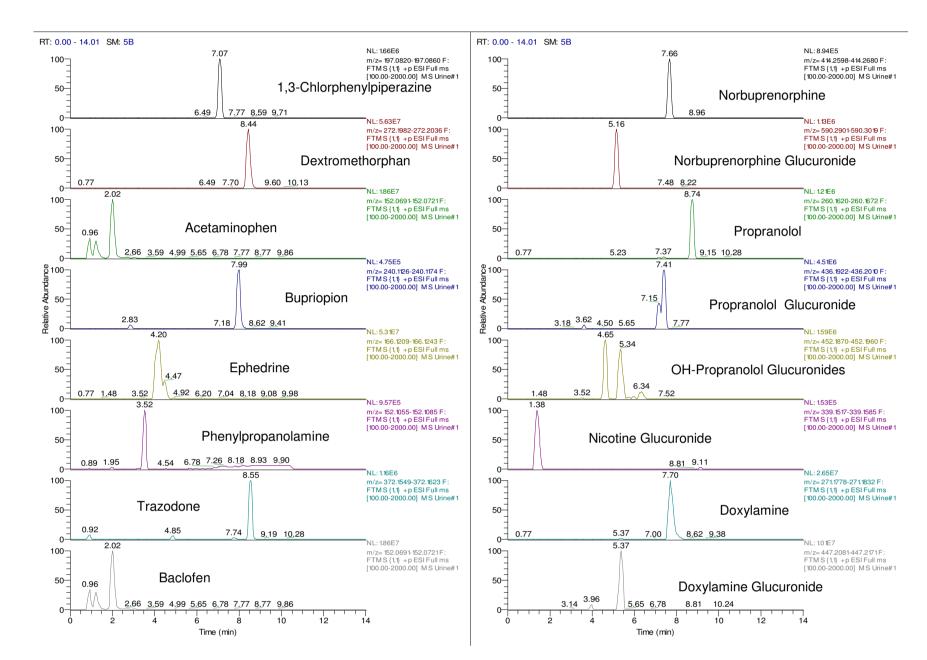
144.0566

119.0492

0.0000

0.0000

0.0000

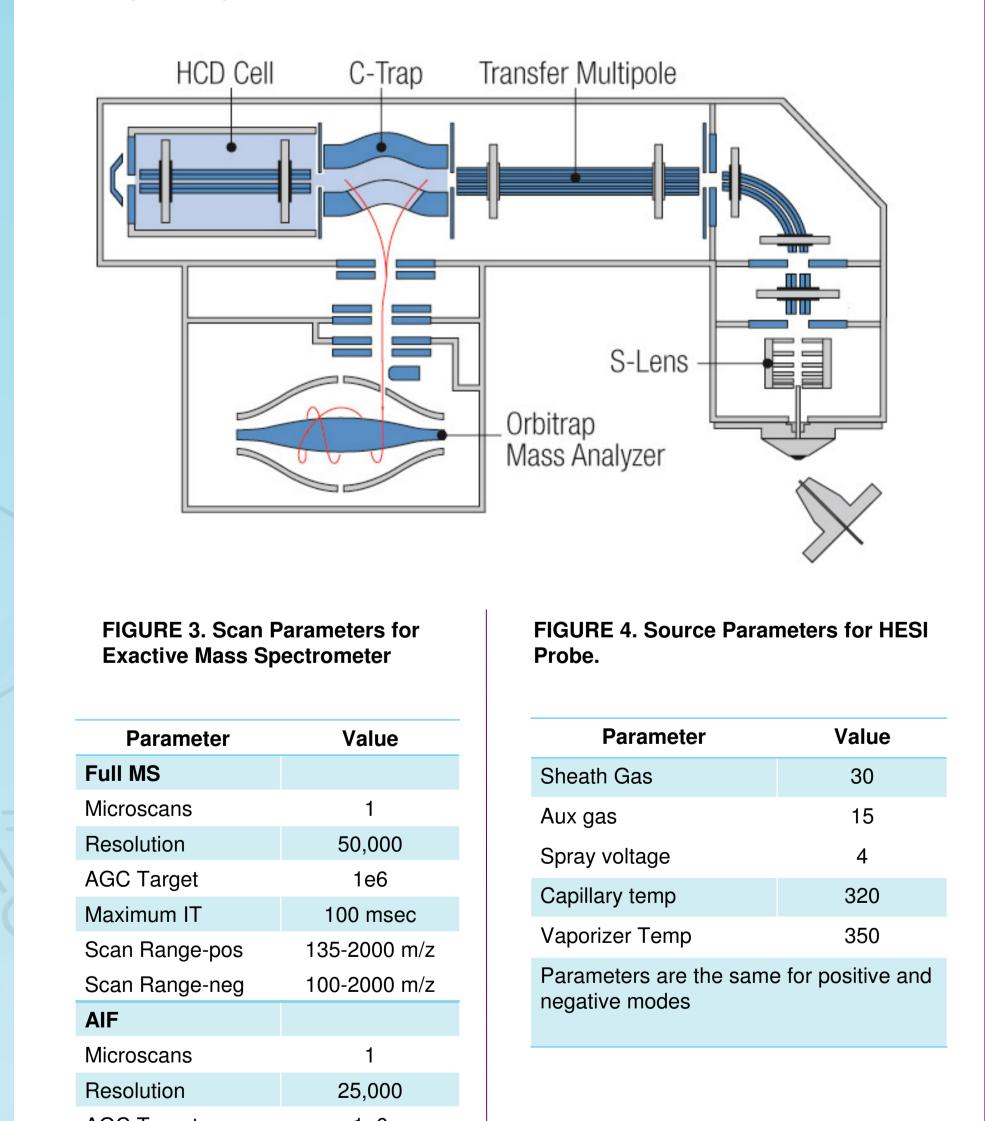

0.0000

0.0000

0.0000

0.0000

FIGURE 5. Chromatograms of some of the compounds detected in urine sample #1 reconstructed with mass accuracy of 5 ppm



Results


ExactFinder uses novel algorithms for background noise subtraction, isotopic pattern comparison and fragment matching. It also uses parameter less peak detection and integration algorithm. These features insure high confidence in reported results.

FIGURE 7. ExactFinder results page showing XIC chromatogram for Baclofen

FIGURE 2. Schematic diagram of the new Exactive Plus high resolution accurate mass benchtop mass spectrometer.

reconstructed with 5 ppm mass window (a), isotopic pattern (b) and fragment ion confirmation (c).

A list of compounds detected in selected urine samples using Immunoassay and Remedy, GC-MS and LC-MS methods are presented in Figure 8.

Based on the data collected for 40 urine samples we observe:

			•Oxazepam Glucuronide
#23	•Psilocin	•Psilocin	•Psilocin
			•Acetaminophen
			•Cotinine
			•Nicotine Glucuronide

For forensic toxicology use only.

All trademarks are the property of Thermo Fisher Scientific and its subsidiaries.

This information is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others.

AGC Target	166	
Maximum IT	100 msec	
NCE	35.0	
Scan Range	50-1000 m/z	

Study Design

40 urine samples were analyzed with LC-MS, GC-MS, Immunoassay and Remedy methods. Results were compared.

GC-MS method

Urine samples were hydrolyzed, processed with SPE procedure and derivatized with BSTFA. The analysis was performed with EI-GC-MS Thermo CSQ II. Compounds were separated on TR-5 MS capillary column and compound identities were established against standard libraries.

Immunoassay

Immunoassays for drugs of abuse were performed by EMIT technique on Siemens DB RxL instrument.

LC-MS data analysis

LC-MS data were analyzed with ExactFinder[™] software. Chromatograms were reconstructed with mass accuracy of 5 ppm. ExactFinder processing method was set to identify compounds based on exact mass and retention time. Compounds were confirmed by fragments and isotopic pattern. Database containing 220 compounds with information required for compounds identification was created (Figure 5).

1.All compounds detected with Immunoassay and Remedy and GC-MS methods were also detected with LC-MS method.
2.GC-MS and LC-MS methods did not detect THC or THC metabolites in sample #6
3.Neither Remedy and Immunoassay together nor GC-MS methods can detect all compounds present in urine samples.
4.LC-MS method detected more compounds and more metabolites then the other analytical techniques

Some of targeted compounds (3-methoxytyramine, levamisole, ziprasidone) were not initially present in EaxctFinder database and were not detected by processing method. Missing compounds were added to database, data was reprocessed and compounds were reported.

Conclusion

- LC-MS method identifies more compounds for forensic toxicologists then Remedy combined with Immunoassay and GC-MS techniques with the exception of low-level THC and THC metabolites.
- Immunoassay is more sensitive method for THC and THC metabolites detection than current LC-MS method which analyzes 20-fold diluted urine.
- LC-MS method implemented on Exactive ultra high resolution mass spectrometer allows for retrospective data analysis.
- LC-MS method uses simple urine dilution as sample preparation method which allows for faster data turn-around time when compared to GC-MS method
- Hydrolysis of urine samples is not required in LC-MS method since compound glucuronides (including very polar like nicotine and morphine glucuronides) can be identified.

