

ThermoFisher SCIENTIFIC

Ion Chromatography for Pharmaceutical Analysis

Jeffrey Rohrer, Ph. D.

The world leader in serving science

Introduction to Ion Chromatography (IC)

• What IC Offers for Pharmaceutical Analysis

 Review of the Two IC Applications for Pharmaceutical Analysis

 How to Develop an IC for Pharmaceuticals Assay and an Example

At the most basic level....

Ion Chromatography = Ion-Exchange + Chemically Suppressed Conductivity

Separation of Common Anions and TFA

The Role of Chemical Suppression (KOH)

Hydroxide Eluent Generation

Separation of the Common Cations

Common IC Detection Techniques

• Conductivity:

Suppressed

• (Non suppressed)

UV detection:

Direct

- (Indirect)
- Post column derivatization
- Amperometry:
 - Direct current amperomety (DC)
 - Integrated amperometry (PAD and IPAD)

Mass spectrometry

HPAE-PAD

High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection

Carbohydrates are separated as oxyanions at high pH (>12)

• These separations require hydroxide eluents

 If the carbohydrate is charged, acetate or another strong eluent must be added to the hydroxide eluent to elute the carbohydrate

- Carbohydrates are detected on a Au working electrode (WE) at high pH by PAD
- PAD applies a series of potentials (a waveform) to a WE and the carbohydrate is detected by its oxidation at 1 potential
- The waveform is applied at a frequency of 2 Hz, i.e. two times a second
- Therefore carbohydrates are separated and detected without derivatization, i.e. a direct analysis

- Anions: Chloride, sulfate, fluoride, nitrite, nitrate, bromide, iodide, bromate, chlorite, chlorate, perchlorate, sulfite, thiosulfate, cyanide, thiocyanate, cyanate, sulfide, benzoate, acetate, formate, silicate, glycolate, oxalate, iodate, lactate, trifluoroacetate, numerous other organic acids and inorganic anions, carbohydrates, amino acids
- **Cations**: Lithium, sodium, potassium, ammonium, calcium, magnesium, barium, strontium, methylamine, dimethylamine, trimethylamine, triethanolamine, triethanolamine, choline, many transition metals, and numerous amines

- Easy (direct) determination of analytes lacking chromophores
- Opportunity to have more automated assays compared to HPLC
- Usually requires no organic solvents
- Separation modes better suited for some analytes
- Counter ion analysis of salt form drug substances to confirm ID and API content

Assay

- Determination of impurities and degradation products limit tests and related substances tests for drug substances and drug products
- Counter ion analysis of salt form drug substances to confirm ID and API content
- Excipient analysis

- Assays of Kanamycin B and Amikacin in DS and DP monographs
- USP-NF <345> Assay for Citric Acid/Citrate and Phosphate
- Risedronate Sodium Assay
- Cefepime Hydrochloride—Limit of N-methylpyrrolidine
- Methacholine Chloride Assay and limit of Acetylcholine Test
- Heparin Sodium Organic Impurities Test
- Sodium Bicarbonate Limit of Ammonia Test

- Published in 2015
- Eliminated flame tests
- Eliminated wet chemical tests that yielded poor results
- Added better wet chemical tests EP harmonization too
- Added instrumentation options for identification tests including ion chromatography and other forms of chromatography.

Example #1

Anion IC Used for an Assay and a Limit Test of a Drug Substance

- The method was published Pharmacopeia Forum 40(5) as part of a modernization proposal for the USP Sodium Nitrite monograph
- Sodium nitrite part of the treatment for acute cyanide poisoning
- The IC method assays nitrite and would replace a titration with potassium permanganate
- The same method determines nitrate impurity
- We replicated the proposed method in our laboratory, though we used eluent generation

IC Separation – Sodium Nitrite USP Monograph

Thermo Fisher

Sodium Nitrite Assay by the Proposed USP Monograph

2	4	6	⁸ m	nin ¹⁰	12	14	16	5	18
		1		Ţ	1				
			2	Peaks:	1 .Nitrite 2 .Nitrate		80.0 0.406	mg/L mg/L	
			Inj. Volume: Detection:	25 μL Dionex AERS	500 (4mm) Supp	ressor, recycle	e mode		
			Flow Rate:	1.5 mL/min					
			Temperature:	Ambient (~24	°C)				
			Eluent Source:	Dionex EGC	500 $K_2 CO_3$ cartride	ge with EPM 5	500		
	4		Eluent:	2.7 mM K ₂ CC	0_3 /0.3 mM KHCO $_3$				
			Column:	Dionex IonPa Dionex IonPa	c AS12A Analytica c AG12A Guard, 4	al, 4 x 250 mm I x 50 mm	I		
				Column: Eluent: Eluent Source: Temperature: Flow Rate: Inj. Volume: Detection: 2 4 6 8 m	Column: Dionex IonPa Dionex IonPa Eluent: 2.7 mM K ₂ CC Eluent Source: Dionex EGC : Temperature: Ambient (~24 Flow Rate: 1.5 mL/min Inj. Volume: 25 µL Detection: Dionex AERS Peaks: 2 2 4 6 8 min 10	Column: Dionex IonPac AS12A Analytice Dionex IonPac AG12A Guard, 4 Eluent: 2.7 mM K ₂ CO ₃ /0.3 mM KHCO ₃ Eluent Source: Dionex EGC 500 K ₂ CO ₃ cartride Temperature: Ambient (~24 °C) Flow Rate: 1.5 mL/min Inj. Volume: 25 µL Detection: Dionex AERS 500 (4mm) Suppl Peaks: 1.Nitrite 2.Nitrate	Column: Dionex IonPac AS12A Analytical, 4 x 250 mm Dionex IonPac AG12A Guard, 4 x 50 mm Eluent: 2.7 mM K ₂ CO ₃ /0.3 mM KHCO ₃ Eluent Source: Dionex EGC 500 K ₂ CO ₃ cartridge with EPM 5 Temperature: Ambient (~24 °C) Flow Rate: 1.5 mL/min Inj. Volume: 25 µL Detection: Dionex AERS 500 (4mm) Suppressor, recycle Peaks: 1.Nitrite 2.Nitrate	Column: Dionex lonPac AS12A Analytical, 4 x 250 mm Dionex lonPac AG12A Guard, 4 x 50 mm Eluent: 2.7 mM K ₂ CO ₃ /0.3 mM KHCO ₃ Eluent Source: Dionex EGC 500 K ₂ CO ₃ cartridge with EPM 500 Temperature: Ambient (~24 °C) Flow Rate: 1.5 mL/min Inj. Volume: 25 µL Detection: Dionex AERS 500 (4mm) Suppressor, recycle mode Peaks: 1.Nitrite 80.0 2.Nitrate 0.406	Column: Dionex IonPac AS12A Analytical, 4 x 250 mm Dionex IonPac AG12A Guard, 4 x 50 mm Eluent: 2.7 mM K ₂ CO ₃ /0.3 mM KHCO ₃ Eluent Source: Dionex EGC 500 K ₂ CO ₃ cartridge with EPM 500 Temperature: Ambient (~24 °C) Flow Rate: 1.5 mL/min Inj. Volume: 25 µL Detection: Dionex AERS 500 (4mm) Suppressor, recycle mode Peaks: 1.Nitrite 80.0 mg/L 2.Nitrate 0.406 mg/L

SCIENTIFIC

Enlarged to View the Nitrate Peak

Example #2

Cation IC Used for an Assay and Limit Test of a Drug Substance

 The method to assay lithium was developed in our lab for a proposal to modernize the USP lithium hydroxide monograph

- The same method was developed to allow the measurement of calcium that is also required in the LiOH monograph
- Our work has been reported in Application Note 1144

Separation of Six Common Cations

Determination of 10 mg/L Lithium in 10 mM Acetic Acid

				Thern	no Fisher
		Minu	tes		
-2.0	5.0	10.0	15.0	20.0	22.0
μS		Flow Rate: Inj.Volume: Detection: Peaks:	40 °C 0.45 mL/min 10 μL Dionex CERS 500 2 π recycle mode	mm	
40.0		Columns: Eluent:	Dionex IonPac CS16 10 mM MSA for 0 to 2 11 to 16 min, 10 mM	, 3 x 250 mm I1 min, 65 mM M MSA for 16 to 22	SA 2 min
				0 050	

SCIENTIFIC

Enlarged to View the Calcium Peak

SCIENTIFIC

Lithium Sample Spiked with Calcium at the USP Limit

Developing an IC Method for Pharmaceutical Analysis

- Question 1: Has someone already done this or similar analysis?
 - Web/Literature search
 - Search AppsLab https://appslab.thermofisher.com/
- If yes, does it apply to my sample and can it be improved?
 - Check the column used and see if Thermo Fisher Scientific has a better column or a different format
- If no, Question 2: Is my analyte an anion, cation, carbohydrate, or other compound amenable to IC?

Developing an IC Method for Pharmaceutical Analysis

- Question 3: Are there compounds of the same charge in the sample?
- If yes, will need a column to resolve those compounds
- If yes, and the concentration of the other compounds are high relative to the analyte of interest, then a high-capacity column will be needed.
- Question 4: How can my analyte be detected &what sensitivity do I need?
 - Detection choice impacts the column and mobile phase chosen

Example

Designing an Assay for Kanamycin Sulfate and Amikacin

Developing an IC Method: Kanamycin B and Amikacin

- Question 1: Has someone already done this or similar analysis?
 Yes a USP-NF method But let's pretend not
- Question 2: Is my analyte an anion, cation, carbohydrate, or other compound amenable to IC?
 - Carbohydrate and some aminoglycosides have been analyzed by HPAE-PAD
- Question 3: Are there compounds of the same charge in the sample?
 - Yes there are 2 analytes, but one low and the other high

Developing an IC Method: Kanamycin B and Amikacin

- Question 4: How can my analyte be detected &what sensitivity do I need?
 - Detection by pulsed amperometry (PAD)
 - •No requirement for the amount of the compound at lower concentration
- •The solution:
 - •As a carbohydrate HPAE-PAD
 - Because they are even weaker anions than typical carbohydrates

 a high pH and therefore high capacity column is required –
 CarboPac MA1

Separation of Amikacin and Kanamycin

 This method used for assay for both compounds in drug substance and drug products – 7 monographs

• IC is finding greater application in pharmaceutical laboratories to develop methods for drug products and drug substances

 IC methods have a greater degree of automation compared to other chromatographic techniques

 IC is one of the techniques being used to modernize pharmacopeia methods

- Jingli Hu Sodium Nitrite
- Sachin Patil Lithium Hydroxide
- Lipika Basumallick Kanamycin and Amikacin

Applications of ION CHROMATOGRAPHY for PHARMACEUTICAL and BIOLOGICAL PRODUCTS

> Edited by Lokesh Bhattacharyya Jeffrey S. Rohrer

WILEY

Thank you for your attention!

