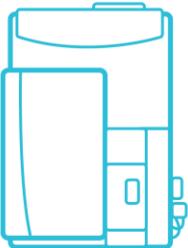
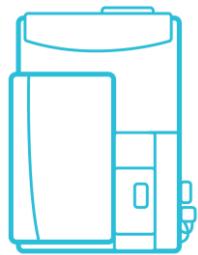
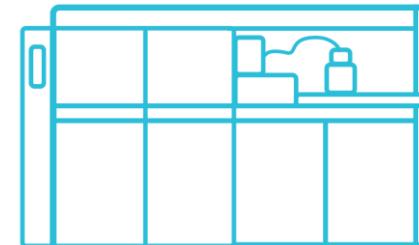

Discovering The Cutting Edge of Trace Elemental Analysis: Introducing the iCAP TQ ICP-MS

Elsamoul Hamdnalla
Thermo Fisher Scientific


The world leader in serving science

ICP-MS Performance for All Applications


Technology for All Challenges


Thermo Scientific™ iCAP™ TQ ICP-MS
Triple quadrupole ICP-MS

Thermo Scientific™ iCAP™ RQ ICP-MS
Single quadrupole ICP-MS

Thermo Scientific™ ELEMENT™2/XR HR-ICP-MS
High Resolution ICP-MS

Thermo Scientific™ NEPTUNE Plus MC-ICP-MS
Multicollector ICP-MS

All the Power, None of the Complexity

Triple quadrupole accuracy
with single quadrupole
ease of use

- ✓ Robust design for routine analysis
- ✓ Advanced interference removal
- ✓ Flexible for advanced applications
- ✓ Integrated automation options
- ✓ Unique ease of use

Inside TQ Technology

- ✓ Quick-connect, self-aligning sample introduction system
- ✓ Drop-down door for easy interface access
- ✓ Range of interfaces provide full instrument flexibility, from maximum robustness to highest sensitivity
- ✓ Zero user maintenance beyond the interface
- ✓ Highest data accuracy in complex samples with the combined QCell and TQ functionality

Applications we are going to focus on...

***Environmental Analysis –
As, Se***

Metallurgy

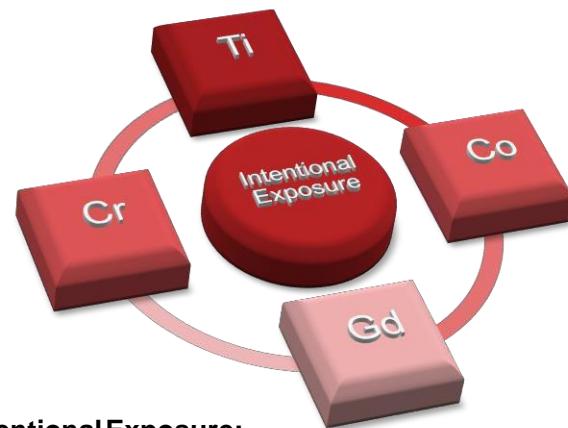
Clinical Research - Ti

Advanced Applications

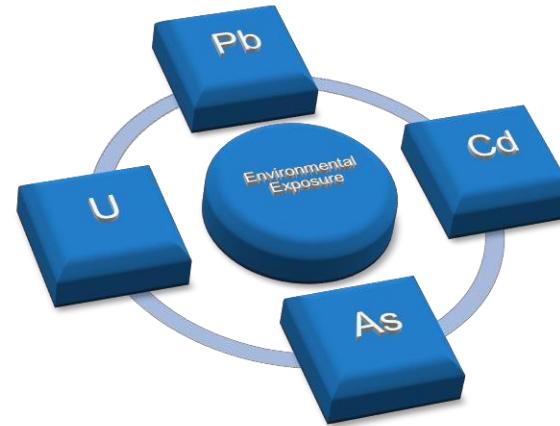
***Speciation Analysis
Nanoparticles***

Meeting human health
and environmental
challenges

Advancing development
in metals, materials and
chemicals



- **Clinical Research and Toxicology**
- **Metallopharmaceuticals**
- **Environmental Analysis/Monitoring**
- **Food Safety**


- **Material Analysis**
- **Nanoparticle Characterization**
- **Metallurgy**
- **Energy Production**

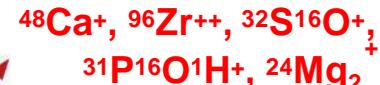
Determination of Trace Elements in Biological Samples

- Trace Elements play important roles for correct function of living beings

Intentional Exposure:
e.g. orthopedic surgery, drug treatment

Environmental Exposure:
e.g. occupational health, work safety

Matrix	Characteristics	Sample Preparation
Urine	Easy and pain-free to obtain	Simple; Dilution
	High salt content	
Blood	Contains protein bound metals	Difficult; Microwave assisted digestion
	Viscosity, Precipitation	
Serum	Reveals metal distribution in the bloodstream	Simple; Dilution
	Salts, low molecular weight species	


Problem: Analysis of Ti in Serum

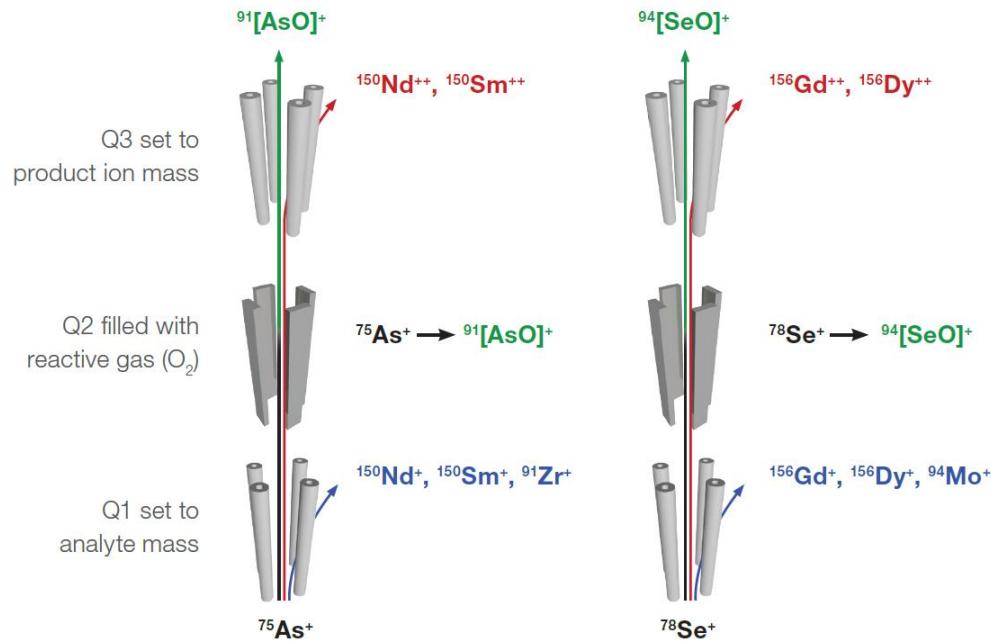
- Ti may be released into the blood stream following degradation of orthopedic or dental implants

- Low concentrations (less than $1 \text{ ng}\cdot\text{mL}^{-1}$)
- Isobaric interference of main isotope ^{48}Ti through ^{48}Ca
- PO^+ , POH^+ , CaH^+ interferences on other Ti isotopes
- Analytical methods need to be
 - **Robust** to cope with sample matrix
 - **Sensitive** to enable detection of low levels
 - **Specific** to address Ti accurately despite interferences

Product Ion $^{114}[\text{Ti}(\text{NH}_3)_3\text{NH}]^+$

Q3 isolates ions required for measurement (e.g. set to product ion mass for Ti^+ at $m/z 114$)

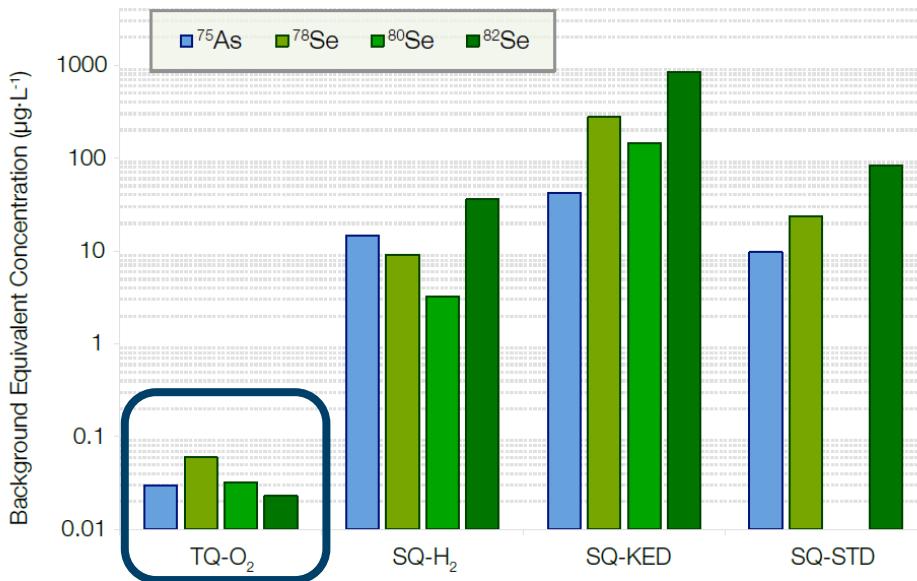
Q2 pressurized with reactive gas to selectively generate reaction products (e.g. $\text{NH}_3 + \text{Ti}^+ \rightarrow \text{Ti}(\text{NH}_3)_3\text{NH}^+$)


Q1 set to analyte mass (e.g. Ti^+ at $m/z 48$) to filter out unwanted ions

Analyte $^{48}\text{Ti}^+$

Solution – use the iCAP TQ

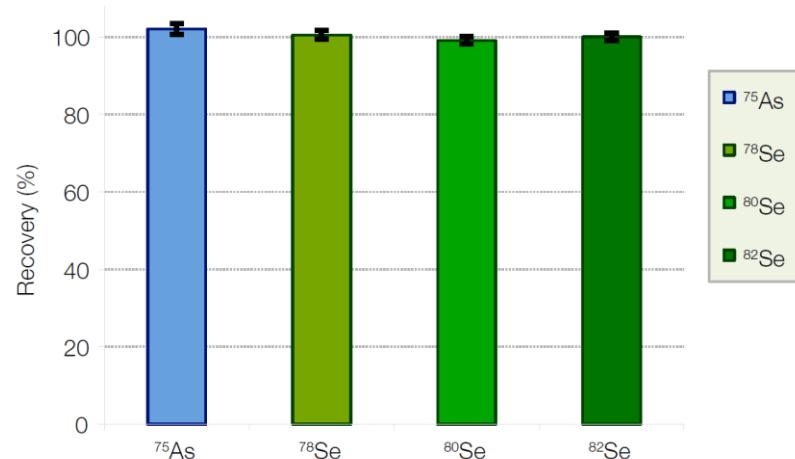
- Control ions entering the cell using Q1
- Use O₂ to efficiently convert As and Se to AsO and SeO in Q2 – the REE⁺⁺ don't react
- Selectively detect AsO and SeO free from REE⁺⁺ interference, using Q3


Type	75As	Method to remove	78Se	Method to remove
Polyatomic	⁴⁰ Ar ³⁵ Cl	KED	⁴⁰ Ar ³⁸ Ar	KED, H ₂
	⁴⁰ Ca ³⁵ Cl			
Isobaric	¹⁵⁰ Nd ²⁺	O ₂	¹⁵⁶ Gd ²⁺	O ₂
	¹⁵⁰ Sm ²⁺		¹⁵⁶ Dy ²⁺	

ICP-MS using triple quadrupole technology – Thermo Scientific iCAP TQ ICP-MS

As and Se with REE present - results in different modes

- Interference removal capability

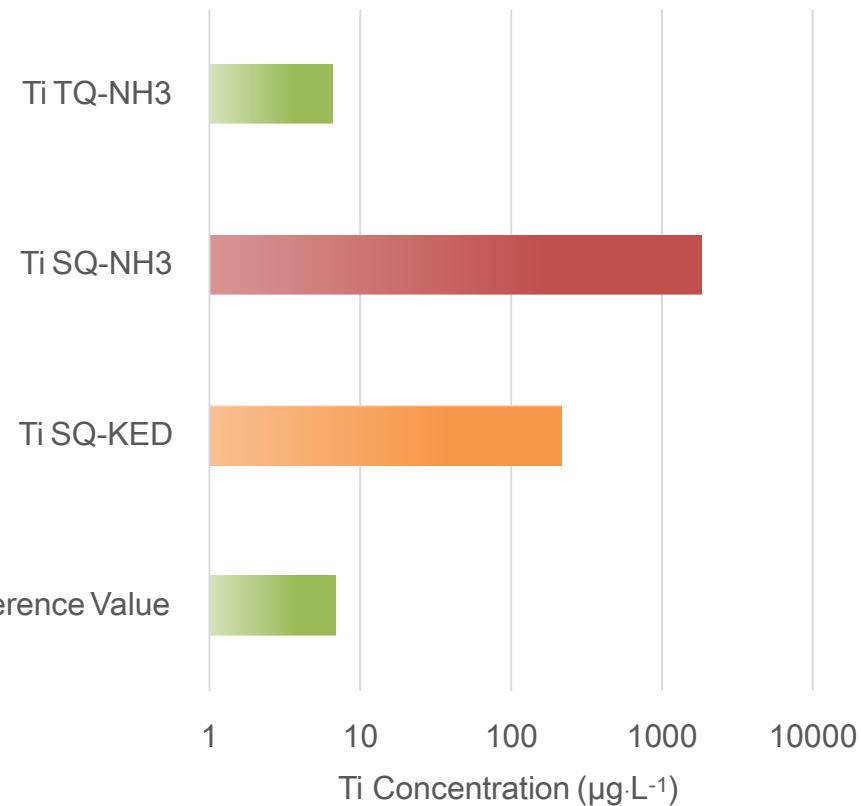

- 1ppm Dy, Gd, Nd, Sm and Tb added
- Increased BECs observed for all SQ-modes due to unresolved doubly charged REE interferences
- Hydrogen is suitable for removing Ar based polyatomics, but is not capable of fully removing REE²⁺ interferences
- TQ-O₂ mode shows dramatically lower BEC values for both As and Se

Proving the accuracy of the sample analysis

Sample analysis results

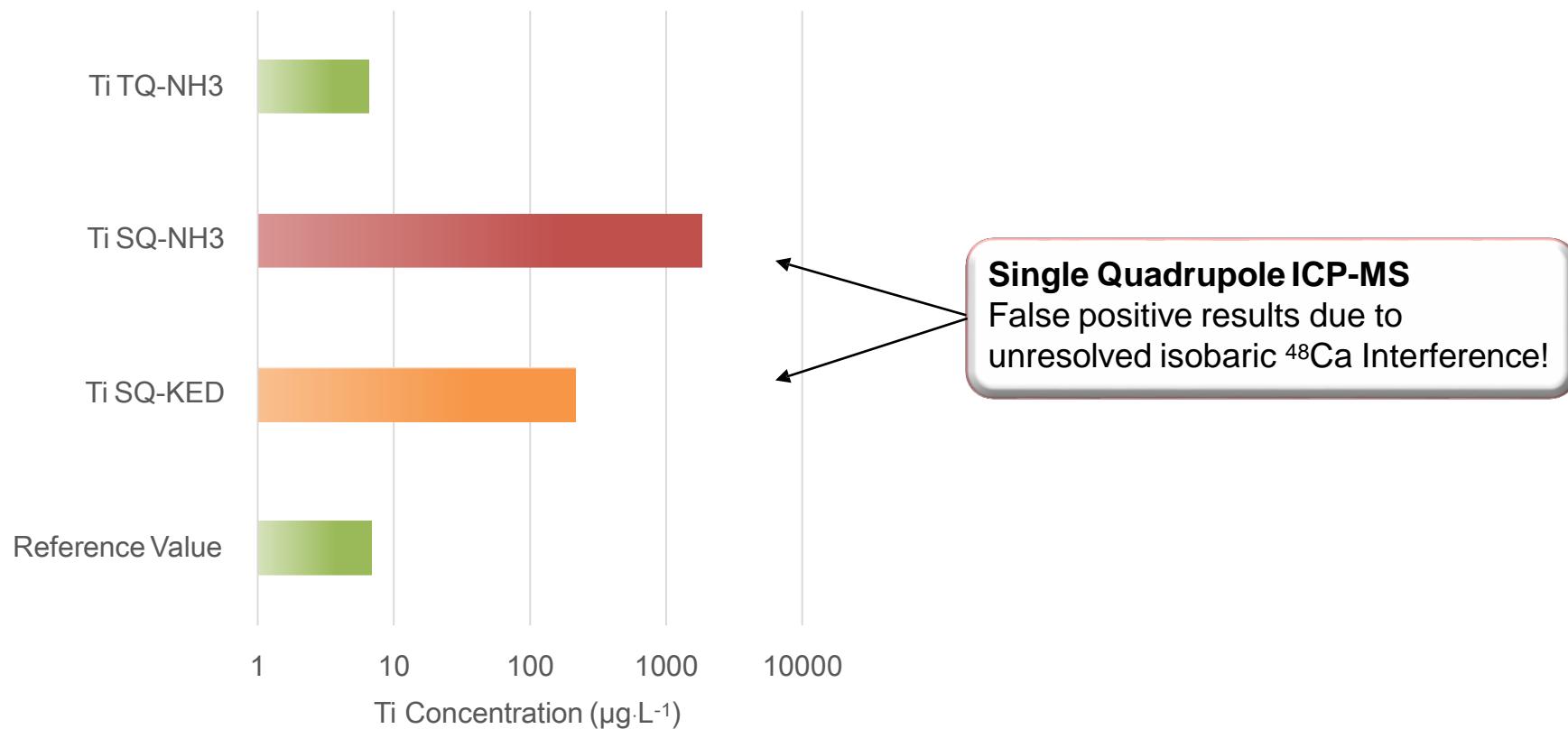
AGV-1	Content in original sample ($\mu\text{g}\cdot\text{g}^{-1}$)	Certified content ($\mu\text{g}\cdot\text{g}^{-1}$)
^{75}As	0.892	0.88
^{78}Se	< LOQ	-
Deep Sea Sediment		
^{75}As	1.303	-
^{78}Se	0.109	-

Spike recovery in REE matrix solution
(1 ppb As and Se)

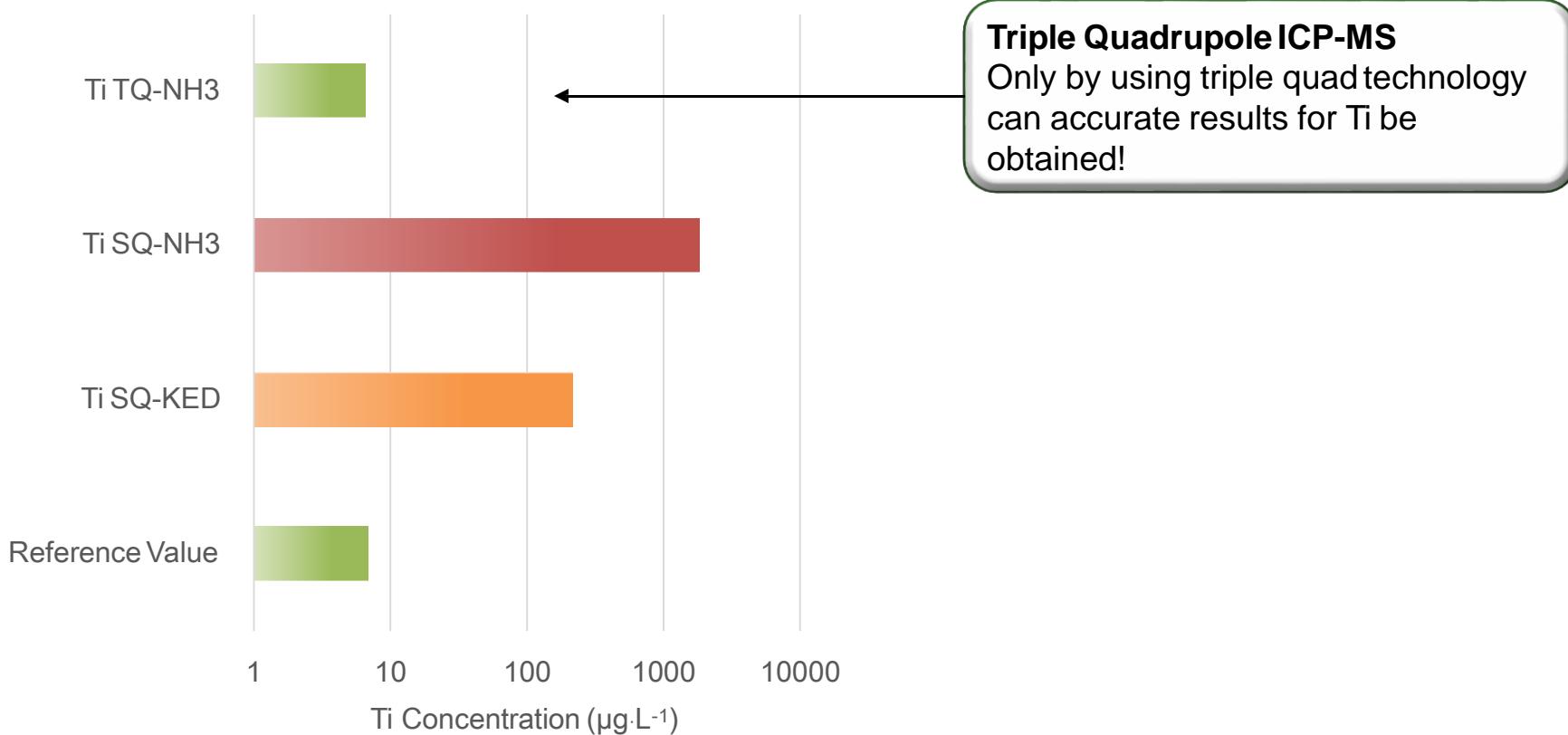


Spike recovery results in samples (1 ppb As and Se)

Analyte	AGV-1	Sediment
Arsenic	94.6 %	97.6 %
Selenium	93.4 %	97.6 %


Recovery of Ti in Serum using Different Measurement Modes

Measured Ti Concentration in Ca-rich Blood
Serum Samples


Recovery of Ti in Serum using Different Measurement Modes

Measured Ti Concentration in Ca-rich Blood
Serum Samples

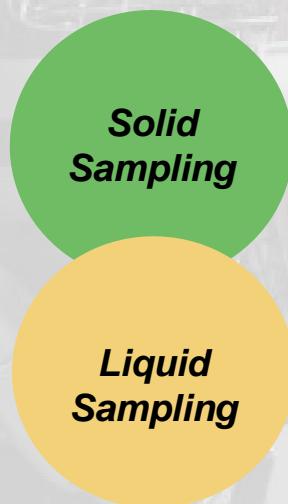
Recovery of Ti in Serum using Different Measurement Modes

Measured Ti Concentration in Ca-rich Blood
Serum Samples

Multielemental Analysis in Serum (and Urine)

	LOD	MDL	Serum L-1		Serum L-2		Urine
			Measured	Reference or reported value	Measured	Reference or reported value	Measured
Na*	0.0027	0.027	2743	2330-3504	3255	2820-4241	2977
Mg*	0.0001	0.0010	21.0	13.4-20.1	39.7	27.1-40.7	85.6
P*	0.0008	0.08	52.3	43.3-65.1	120	88-132	710
S*	0.145	1.3800	1100	1008	1495	1335	476
K*	0.0021	0.02	150	101-153	260	176-265	1946
Ca*	0.002	0.0200	90.1	69-104	124	95-143	99.8
Fe*	0.00002	0.00023	1.64	1.17-1.77	2.18	1.72-2.58	0.005
Li	1.13	11.2920	5778	4202-6320	10806	7739-11639	22.4
B	0.67	6.746	70.1	79.4	87	82.1	1548
Al	0.20	1.9670	54.2	25.2-75.7	122	96-144	13.7
V	0.002	0.022	1.04	1.10	1.26	1.10	0.229
Cr	0.008	0.0800	1.70	1.30-3.05	5.20	4.00-7.50	0.838
Mn	0.008	0.084	10.7	7.9-11.9	14.2	11.6-17.4	0.914
Co	0.0001	0.0010	1.38	0.67-1.57	2.16	2.13-3.97	0.027
Ni	0.006	0.055	6.26	3.38-7.9	9.41	7.9-11.9	1.45
Zn	0.051	0.5130	1052	844-1269	1527	1404-1831	359
As	0.002	0.018	0.383	0.400	0.374	0.380	1.31
Se	0.010	0.1000	80.8	51-120	124	95-176	7.31
Rb	0.004	0.035	4.20	4.40	8.70	8.70	812
Sr	0.006	0.0570	95.7	95.0	106	110	89.2
Mo	0.005	0.048	0.710	0.760	1.20	1.21	7.62
Cd	0.001	0.0100	0.130	0.130	0.140	0.140	0.229
Ti	0.002	0.02	6.64	6.80	6.38	6.80	0.151
Sb	0.006	0.0600	11.6	10.4	16.1	15.0	0.040
I	0.022	0.219	75.5	71.8	69.9	60.9	82.8
Ba	0.003	0.0300	172	190	133	139	2.09
Pb	0.0007	0.007	0.370	0.400	0.666	0.660	0.446
U	0.0001	0.0010	0.288	0.302	0.357	0.359	0.020

mg·L⁻¹


µg·L⁻¹

Elements accurately measured from 0.005 – 10,806 ppb

Determination of Trace Elements in Metals and Alloys

Nickel Alloys are used for industrial applications
e.g. turbine blades
Selenium content is critical, may lead to weakness

LA-ICP-MS

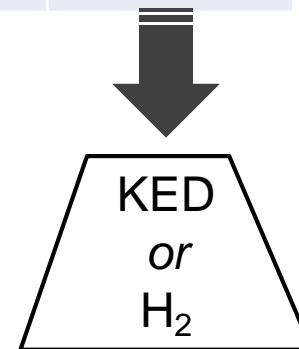
GD-MS

ICP-MS

Analysis of Se impurities in a Ni matrix

- Se analysis using ICP-MS

- Elevated 1st ionization potential → low ion yield
- Main isotopes affected through Ar based polyatomics
- Additional Ni interferences on all Se isotopes
- Potential for additional interferences in case Br is present

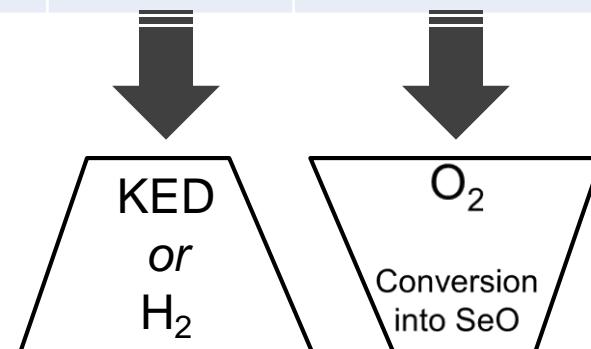

Isotope <i>m/z</i>	Abundance (%)
74	0.90
76	9.00
77	7.60
78	23.60
80	49.70
82	9.20

Analysis of Se impurities in a Ni matrix

- Se analysis using ICP-MS

- Elevated 1st ionization potential → low ion yield
- Main isotopes affected through Ar based polyatomics
- Additional Ni interferences on all Se isotopes
- Potential for additional interferences in case Br is present

Isotope <i>m/z</i>	Abundance (%)	Normal Matrix Interference
74	0.90	
76	9.00	$^{40}\text{Ar}^{36}\text{Ar}^+$
77	7.60	$^{40}\text{Ar}^{37}\text{Cl}^+$
78	23.60	$^{40}\text{Ar}^{38}\text{Ar}^+$, $^{78}\text{Kr}^+$
80	49.70	$^{40}\text{Ar}^{40}\text{Ar}^+$, $^{80}\text{Kr}^+$
82	9.20	$^{82}\text{Kr}^+$

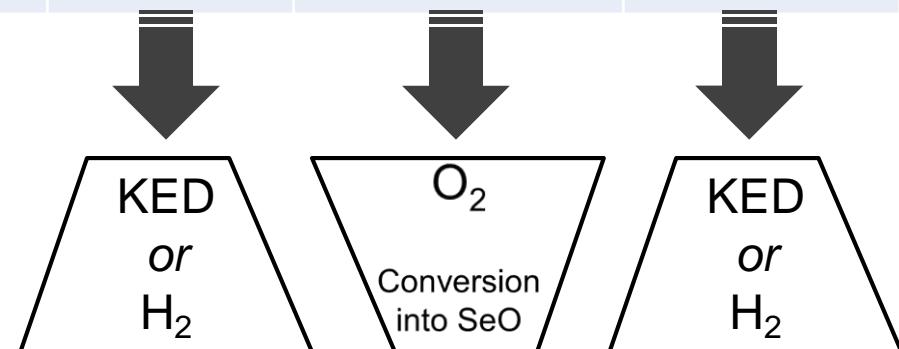


Analysis of Se impurities in a Ni matrix

- Se analysis using ICP-MS

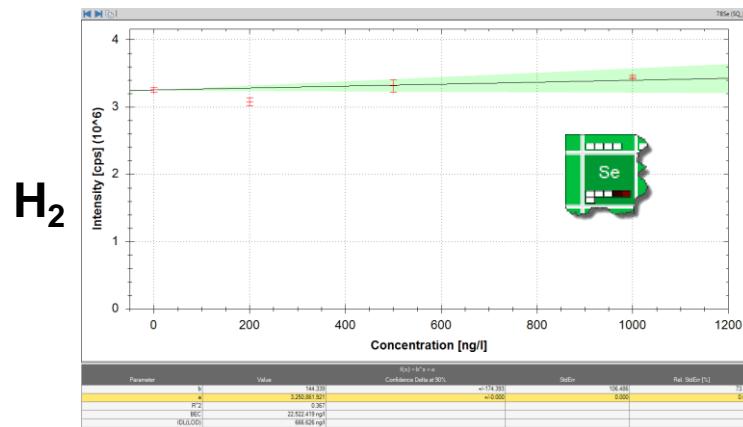
- Elevated 1st ionization potential → low ion yield
- Main isotopes affected through Ar based polyatomics
- Additional Ni interferences on all Se isotopes
- Potential for additional interferences in case Br is present

Isotope <i>m/z</i>	Abundance (%)	Normal Matrix Interference	Additional Ni Matrix Interference
74	0.90		$58\text{Ni}^{16}\text{O}^+$
76	9.00	$40\text{Ar}^{36}\text{Ar}^+$	$60\text{Ni}^{16}\text{O}^+$
77	7.60	$40\text{Ar}^{37}\text{Cl}^+$	$60\text{Ni}^{16}\text{O}^1\text{H}^+$
78	23.60	$40\text{Ar}^{38}\text{Ar}^+$, 78Kr^+	$62\text{Ni}^{16}\text{O}^+$
80	49.70	$40\text{Ar}^{40}\text{Ar}^+$, $^{80}\text{Kr}^+$	$64\text{Ni}^{16}\text{O}^+$
82	9.20	$^{82}\text{Kr}^+$	$64\text{Ni}^{18}\text{O}^+$, $64\text{Ni}^{16}\text{O}^1\text{H}^+$

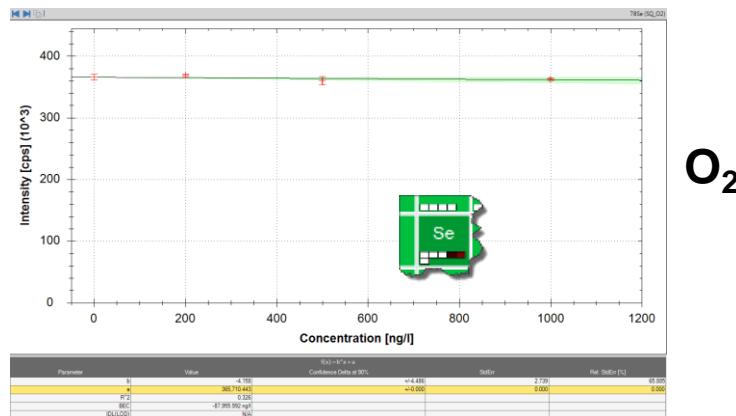


Analysis of Se impurities in a Ni matrix

- Se analysis using ICP-MS

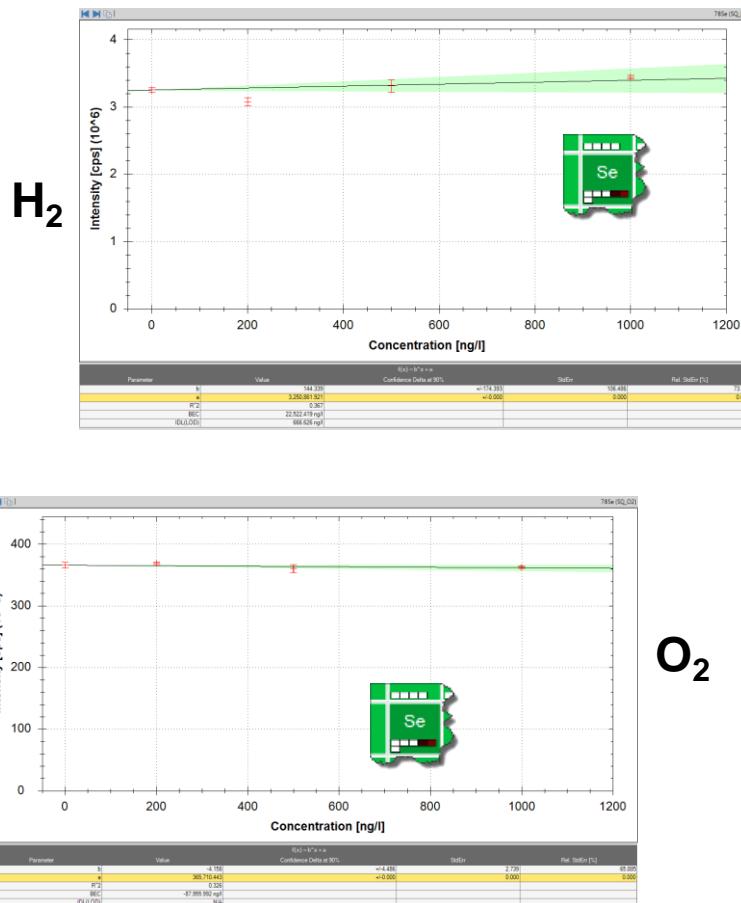

- Elevated 1st ionization potential → low ion yield
- Main isotopes affected through Ar based polyatomics
- Additional Ni interferences on all Se isotopes
- Potential for additional interferences in case Br is present

Isotope <i>m/z</i>	Abundance (%)	Normal Matrix Interference	Additional Ni Matrix Interference	Additional Bromine Interference
74	0.90		$58\text{Ni}^{16}\text{O}^+$	
76	9.00	$40\text{Ar}^{36}\text{Ar}^+$	$60\text{Ni}^{16}\text{O}^+$	
77	7.60	$40\text{Ar}^{37}\text{Cl}^+$	$60\text{Ni}^{16}\text{O}^1\text{H}^+$	
78	23.60	$40\text{Ar}^{38}\text{Ar}^+$, 78Kr^+	$62\text{Ni}^{16}\text{O}^+$	
80	49.70	$40\text{Ar}^{40}\text{Ar}^+$, $^{80}\text{Kr}^+$	$64\text{Ni}^{16}\text{O}^+$	$79\text{Br}^1\text{H}^+$
82	9.20	82Kr^+	$64\text{Ni}^{18}\text{O}^+$, $64\text{Ni}^{16}\text{O}^1\text{H}^+$	$81\text{Br}^1\text{H}^+$



Interference Removal using SQ-ICP-MS

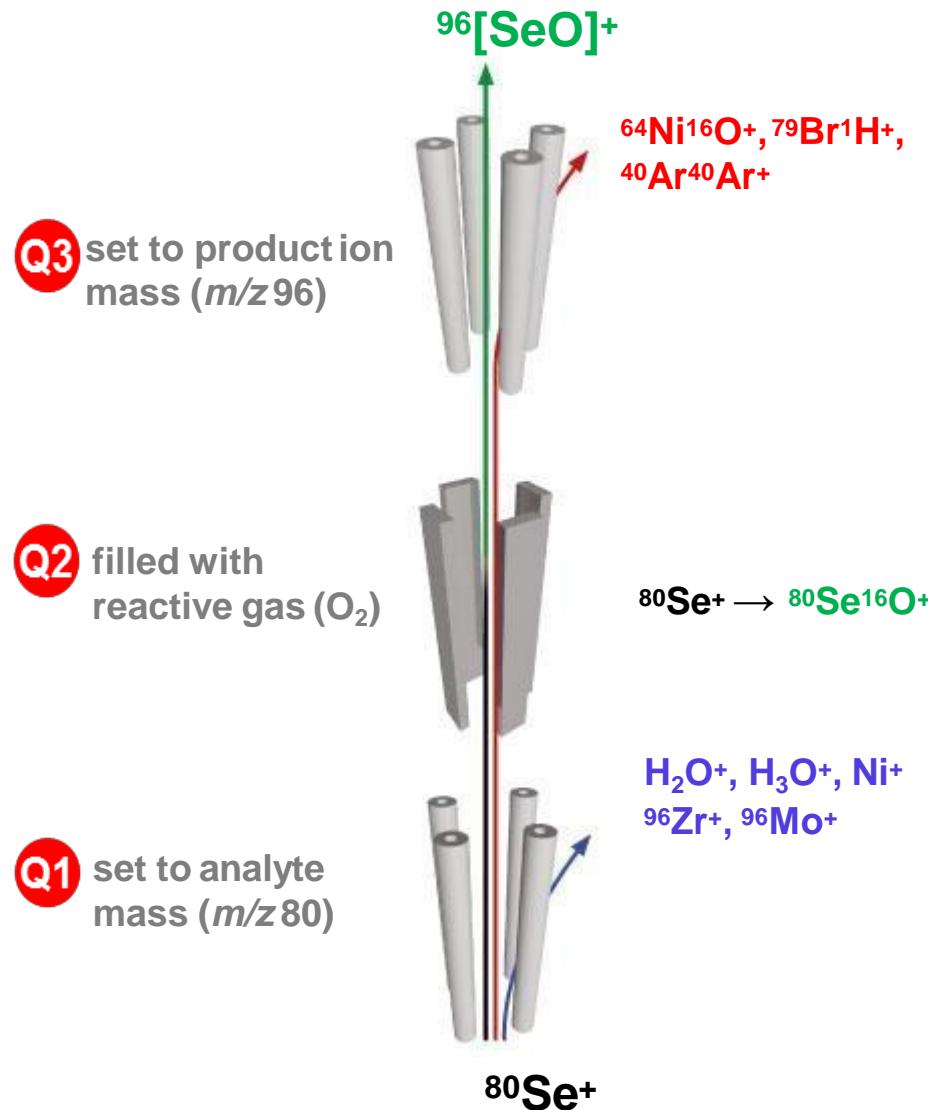
Sample: Se in 100 ppm Ni



- Both reaction gases are not suitable to fully remove the interferences!

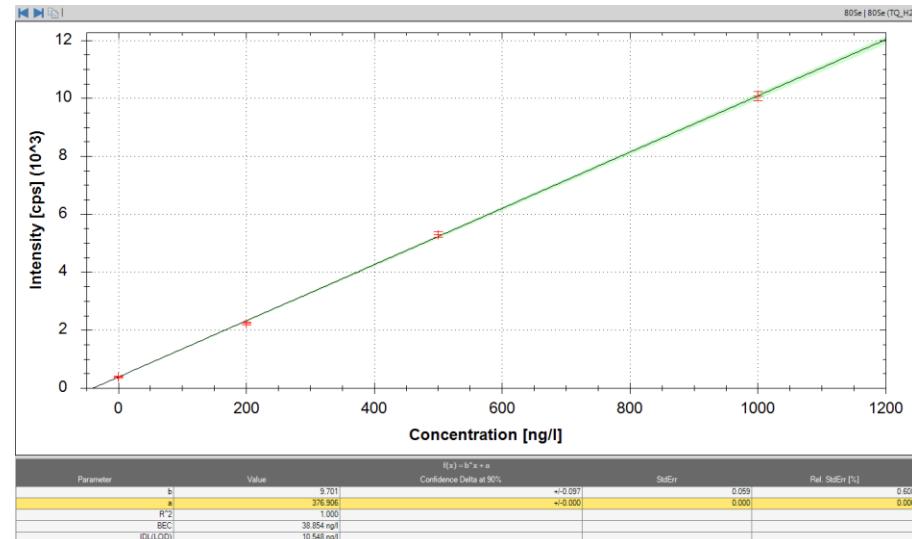
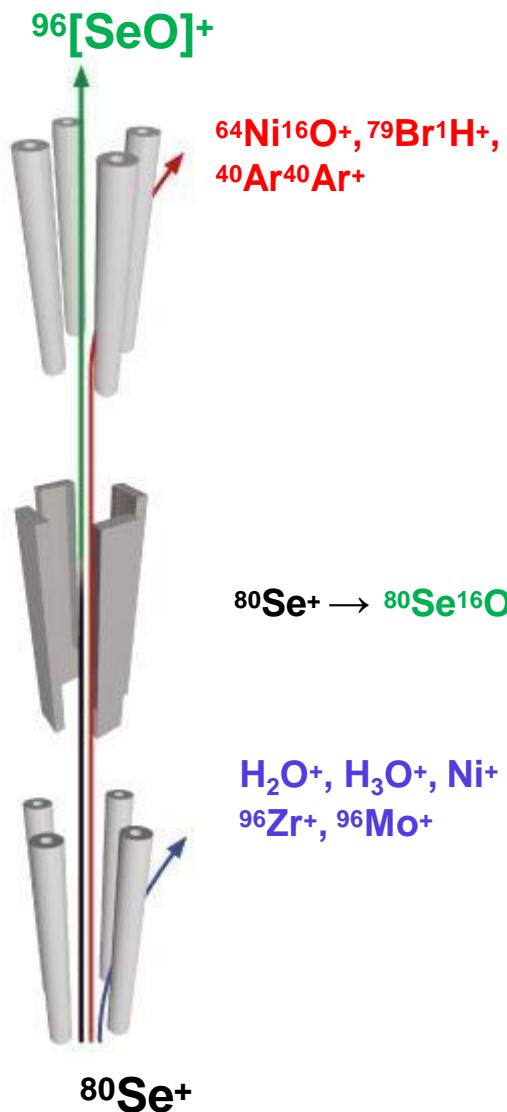
Interference Removal using SQ-ICP-MS

Sample: Se in 100 ppm Ni



- Both reaction gases are not suitable to fully remove the interferences!
- As all primary ions enter the CRC, new interferences including water adducts are observed

Ion Mass	Identifier	Interference
92	76Se ¹⁶ O ⁺	$^{58}\text{Ni}^{16}\text{O H}_2\text{O}^+$
93	77Se ¹⁶ O ⁺	$^{58}\text{Ni}^{16}\text{O H}_3^+$
94	78Se ¹⁶ O ⁺	$^{60}\text{Ni}^{16}\text{O H}_2\text{O}^+$, $^{58}\text{Ni}^{18}\text{O H}_2\text{O}^+$
96	80Se ¹⁶ O ⁺	$^{62}\text{Ni}^{16}\text{O H}_2\text{O}^+$, $^{60}\text{Ni}^{18}\text{O H}_2\text{O}^+$
98	82Se ¹⁶ O ⁺	$^{64}\text{Ni}^{16}\text{O H}_2\text{O}^+$, $^{62}\text{Ni}^{18}\text{O H}_2\text{O}^+$



Need to control ions entering the CRC system !

Interference Removal using TQ-ICP-MS

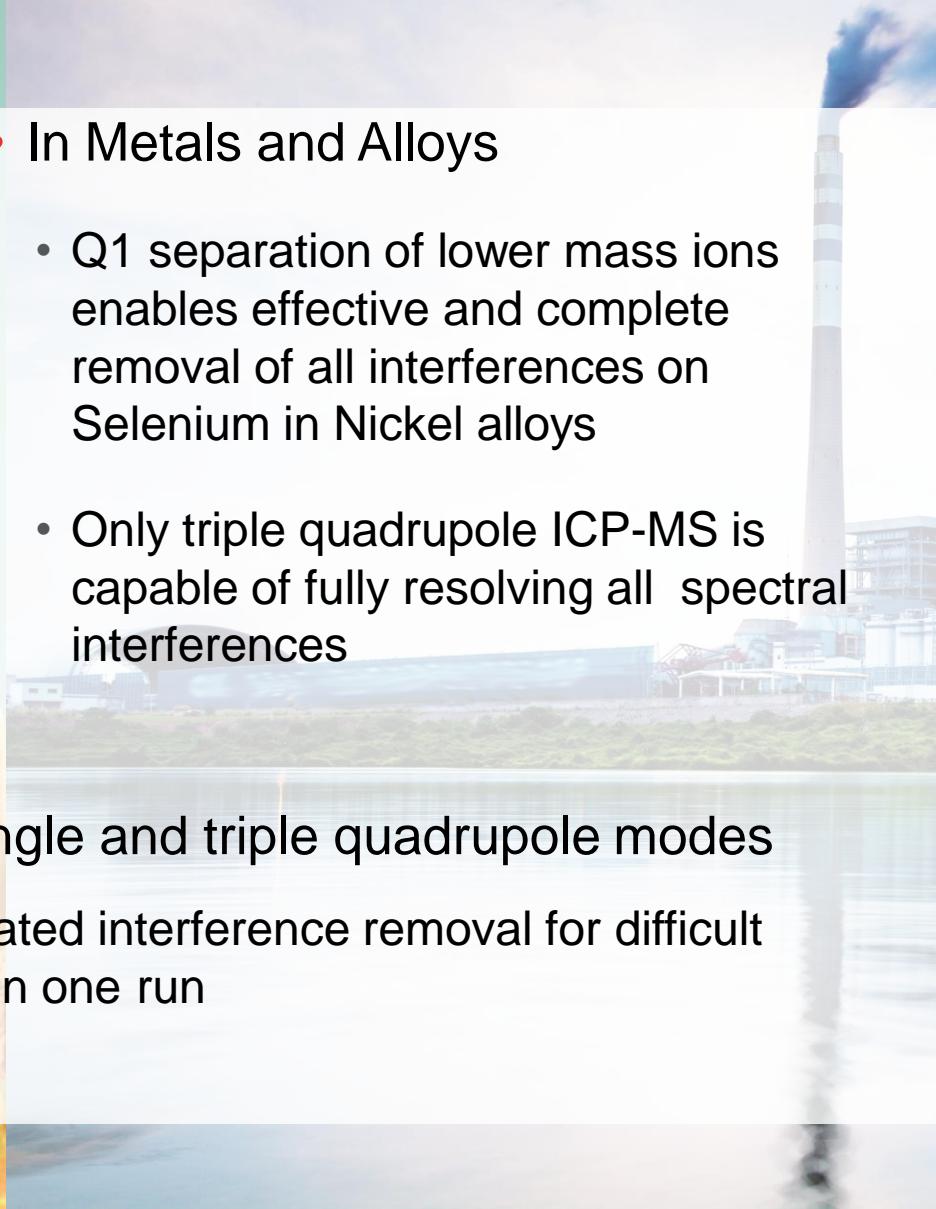
Interference Removal using TQ-ICP-MS

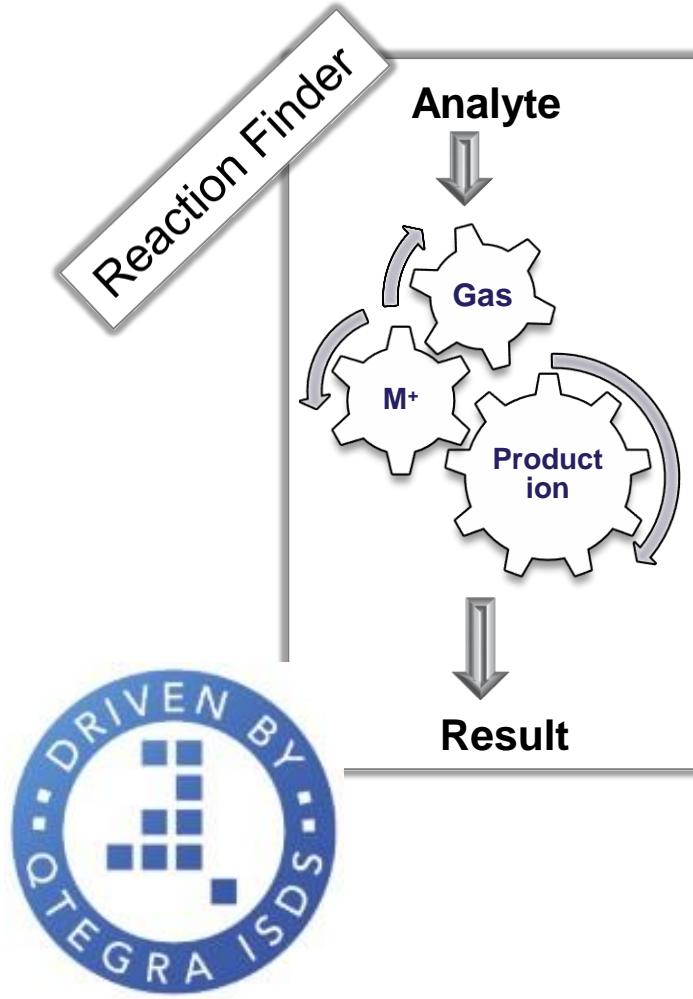
Q3 set to production mass (m/z 96)

Mode/ Isotope	Sensitivity [cps·L· μg^{-1}]	BEC [ng·L $^{-1}$]	IDL [ng·L $^{-1}$]
TQ-H ₂			
⁷⁸ Se	4,500	46.5	12.9
⁸⁰ Se	9,700	38.9	10.5
TQ-O ₂			
⁷⁸ Se	1,000	47.8	18.8
⁸⁰ Se	2,200	13.2	5.10

Accurate Multielemental Analysis with TQ-ICP-MS

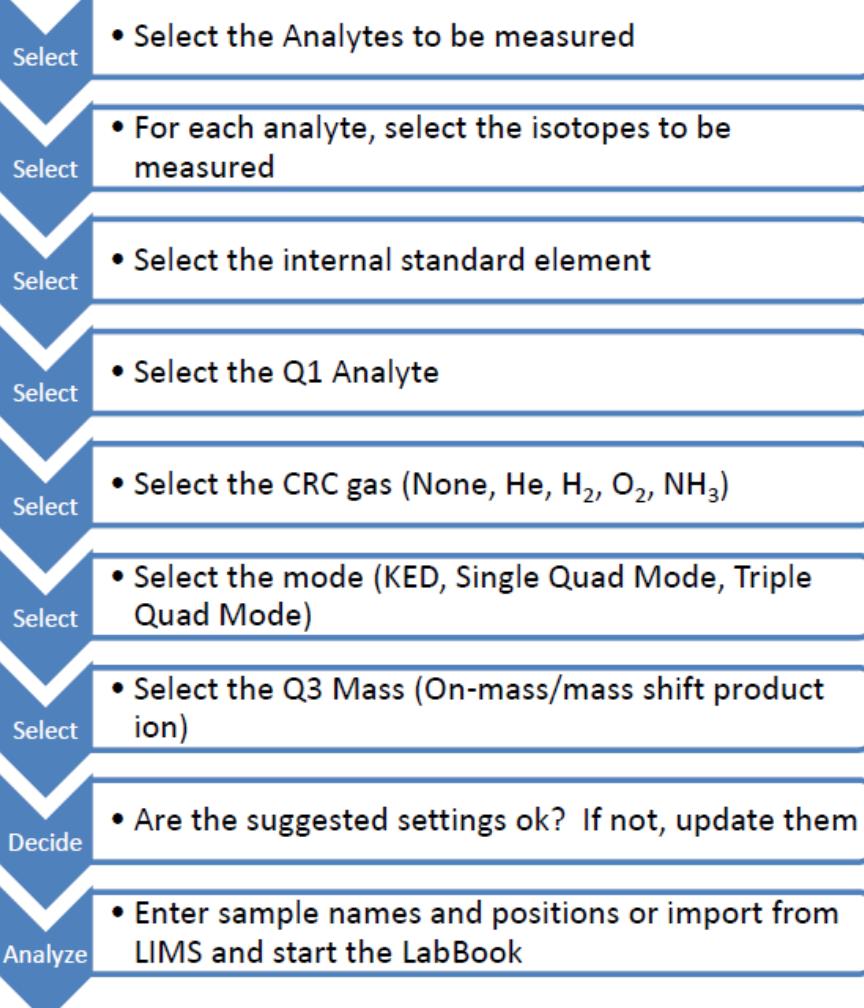
- In Biological Samples


- High detection sensitivity allows detection of low Titanium concentrations in complex biological samples
- Excellent agreement with certified value obtained for Titanium in serum

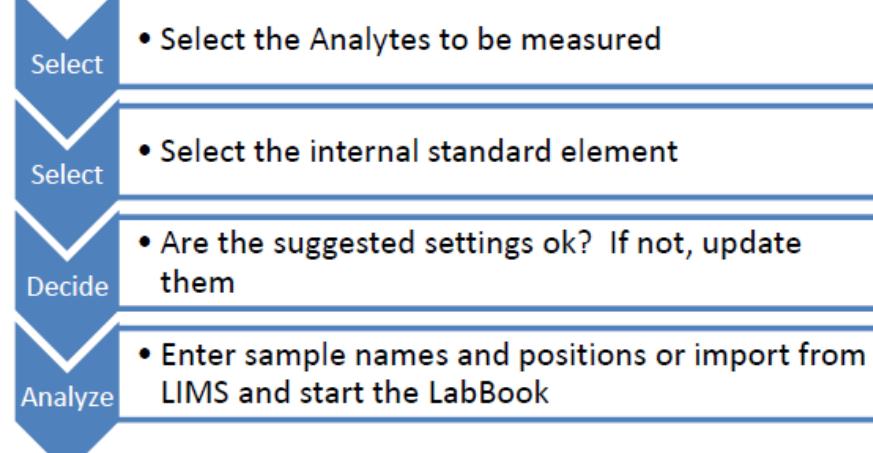

- Full flexibility and usability of both single and triple quadrupole modes
- Full multielemental analysis with dedicated interference removal for difficult analytes and comprehensive He KED in one run

- In Metals and Alloys

- Q1 separation of lower mass ions enables effective and complete removal of all interferences on Selenium in Nickel alloys
- Only triple quadrupole ICP-MS is capable of fully resolving all spectral interferences



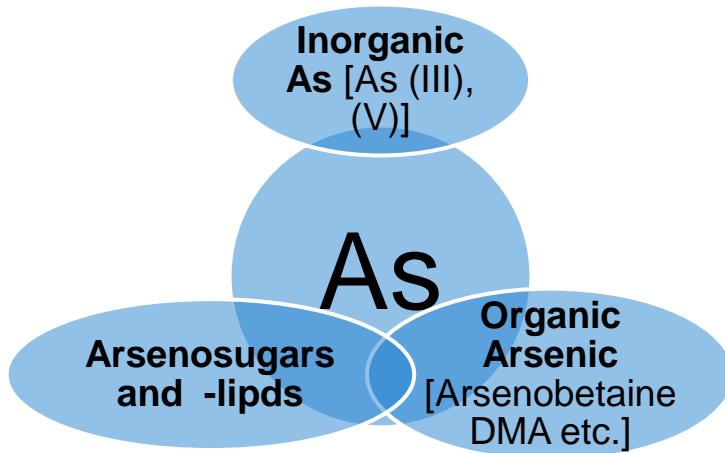
Redefining TQ-ICP-MS with Unique Ease of Use



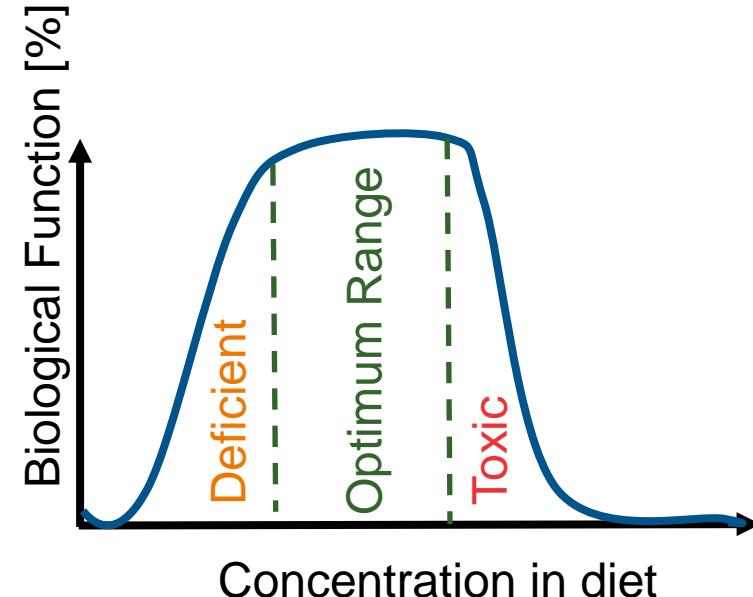
Redefining TQ-ICP-MS with Unique Ease of Use

Without Reaction Finder

With Reaction Finder



< 20 min to set up
method


Example Application: As and Se in Environmental Samples

The role of As and Se in the environment

- Arsenic: A potential hazard in the food chain

- Selenium: An essential nutrient

- Many different chemical forms (species) are known that strongly differ in toxicity and bioavailability
- Plants such as rice are well known for high accumulation of As from soils

- Knowledge of Se content in soil may prevent Se deficiency in both human and animal populations

Example Application – As and Se in Environmental Samples

Interferences on As and Se: Ar_2 , ArCl – easy to remove using He KED but if REE are present....

Single Quad ICP-MS: KED

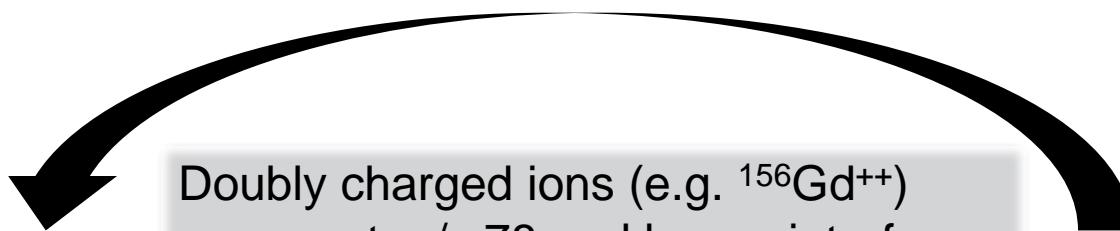
Typically enhances M^{2+} Interferences

Doubly charged ions (e.g. $^{156}\text{Gd}^{++}$) appear at m/z 78 and hence interfere with the detection of $^{78}\text{Se}^+$

As and Se,
 m/z 75, 78,
80

Rare Earth Elements, m/z 140-176
 \rightarrow ^{150}Sm , ^{156}Gd , ^{160}Gd

m/z


Example Application – As and Se in Environmental Samples

Single Quad ICP-MS: KED

Typically enhances M^{2+} Interferences

Solution:

Mass shift As and Se using O_2

As and Se,
m/z 75, 78,
80

$^{75}\text{As}^{16}\text{O}^+$, $^{78}\text{Se}^{16}\text{O}^+$,
 $^{80}\text{Se}^{16}\text{O}^+$
@ m/z 91, 94 and 96

Rare Earth Elements, m/z 140-176
→ ^{150}Sm , ^{156}Gd , ^{160}Gd

m/z

Example Application – As and Se in Environmental Samples

Single Quad ICP-MS: KED

Typically enhances M^{2+} Interferences

Solution:

Mass shift As and Se using O_2

Other interferences: $^{91}Zr^+$, $^{94,96}Mo^+$, if present in the sample

Doubly charged ions (e.g. $^{156}Gd^{++}$) appear at m/z 78 and hence interfere with the detection of $^{78}Se^+$

As and Se,
m/z 75, 78,
80

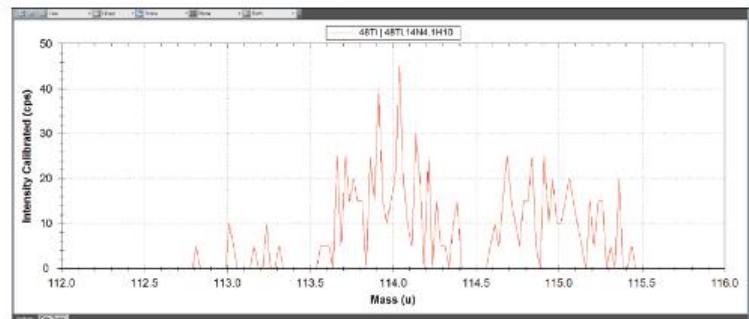
Rare Earth Elements, m/z 140-176
 $\rightarrow^{150}Sm, ^{156}Gd, ^{160}Gd$

m/z

Recovery of Ti in Serum using Different Modes

Single Quadrupole ICP-MS

Triple Quadrupole ICP-MS


	Ti SQ-KED, $\mu\text{g}\cdot\text{L}^{-1}$	Ti SQ- NH_3 , $\mu\text{g}\cdot\text{L}^{-1}$	Ti TQ- NH_3 , $\mu\text{g}\cdot\text{L}^{-1}$	Ti Reported Value, $\mu\text{g}\cdot\text{L}^{-1}$
Serum L-1	167	1800	6.64	6.8
Serum L-2	262	1850	6.38	6.8

False positive results due to unresolved isobaric ^{48}Ca Interference

Only by using triple quad technology can accurate results for Ti be obtained!

Background signal on $^{48}\text{Ti}^{14}\text{N}_4\text{H}_{10}$ for a solution containing $10 \text{ mg}\cdot\text{L}^{-1}$ of Cd

- Excellent agreement with certified value obtained for Ti
- Attainable detection sensitivity allowed to detect low concentrations of Ti in the prepared sample solution

This would be a problem using single quadrupole instruments with NH_3 !

Control Se Impurities in a Nickel Matrix

- Analysis of Se impurities is crucial e.g. for its use in turbine blades

- Low concentrations
- Polyatomic interferences

- Analytical methods need to be

- **Robust** to cope with sample matrix
- **Sensitive** to enable detection of low levels
- **Specific** to address Se accurately despite interferences

Thermo Scientific™
iCAP™ RQ ICP-MS

Thermo Scientific™
iCAP™ TQ ICP-MS

Single quad or triple quad application?

Advanced Applications using the iCAP TQ ICP-MS

- Speciation Analysis

- ChromControl plug-in for hardware control
- Hyphenation of Gas Chromatography (GC) using GCI-100

Analyte	Advantage when using iCAP TQ	Application
S, P	Improved Interference Removal, lower background	Speciation of Biomolecules like proteins, peptides or DNA
As	Higher Sensitivity when analysing $^{75}\text{As}^{16}\text{O}$ instead of ^{75}As [KED]	All sample matrices: Food, Water, Urine etc.
Se	Higher Sensitivity when analysing SeO instead of Se [KED]; Reduced background on ^{80}Se	All sample matrices

Advanced Applications using the iCAP TQ ICP-MS

- Nanoparticle Analysis

- npQuant plug-in for Qtegra ISDS

Analyte	Advantage when using iCAP TQ	Application
Au, Ag	No apparent advantage → High Detection Sensitivity	Method Development, Validation
Ti	Increased specificity and lower background	Environmental samples, Cosmetic products
Others	Improved interference removal is advantageous to reduce background and address particles more efficiently	

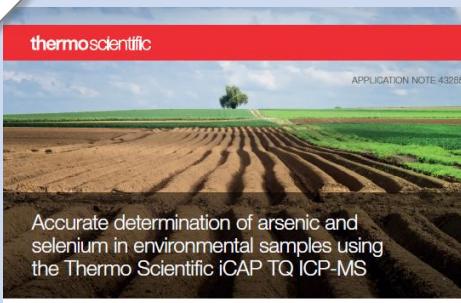
- Accurate trace elemental quantification enabled through improved interference removal
 - Simple method development – let Reaction Finder set up your method
 - Higher productivity – Get the right result first time
 - Lower LODs for challenging applications


- Reliable and consistent operation built on successful Platform
 - More uptime – less cleaning and longer periods of uninterrupted analysis
 - Less downtime for maintenance – easiest access to interface

- Automated solutions, with integrated software features & control
 - Accelerate the TEQ workflow with intelligent dilution
 - Unattended operation - leave personnel free to do more important tasks in the lab
- Qtegra ISDS software providing intuitive workflows to streamline efficiency
 - Common platform to iCAP 7000 Series ICP-OES for reduced training and operator flexibility
 - Plug-in based platform enables easy implementation of advanced applications

iCAP TQ ICP-MS application and technical notes

Multi-elemental Pharma


The determination of elemental impurities in vitamin B12 supplements using the Thermo Scientific iCAP TQ ICP-MS

Authors
Daniel Kutschér, Marcus Maneck,
Shona McSheery Duco,
Thermo Fisher Scientific Bremen,
Germany

Goal
To demonstrate the accurate determination of elemental impurities, especially As, in vitamin B12 according to the method outlined in USP chapter 2325, Elemental Impurities - Procedures. To demonstrate that triple quadrupole (TQ) ICP-MS can be easy to use and methods can be set up through a dedicated tool, Reaction Finder, which automatically selects optimized parameters with respect to reaction time and ionization source.

Keywords

Targeted Environment

Accurate determination of arsenic and selenium in environmental samples using the Thermo Scientific iCAP TQ ICP-MS

Authors
Marcus Maneck¹, Simon
Lofthouse², Simon
Lofthouse², Philip Boenig²
and Shona McSheery Duco²
¹Thermo Fisher Scientific,

Goal
To demonstrate the accurate determination of arsenic and selenium in sediments and rocks that contain elevated levels of rare earth elements using triple quadrupole ICP-MS.

Targeted Metallurgy

Accurate measurement of elemental impurities in metals and metal alloys using the Thermo Scientific iCAP TQ ICP-MS

Authors
Marcus Maneck¹, Daniel Kutschér,
Shona McSheery Duco²,
Thermo Fisher Scientific, Bremen,
Germany

Introduction
Material properties are critical to their successful use in modern applications. Specific mechanical or chemical properties are often dependent on the presence and level of certain elements in the material. As a large proportion of construction materials are based on metallurgical products, it is critical to

Multi-elemental Clinical research

Total elemental analysis in clinical research using the Thermo Scientific iCAP TQ ICP-MS

Authors
Tomoko Vincent, Applications
Specialist
Thermo Fisher Scientific,
Bremen, Germany

Introduction
Trace element analysis of biological samples provides significant information to support clinical research and forensic toxicology. An interesting example of trace elemental analysis for clinical research purposes is exploring the degradation of titanium based orthopedic and dental implants in humans. Following recent research on the possible carcinogenic effects of titanium dioxide the fate of titanium in the human body has become a growing area of clinical research focus. To support this there is a need for the development of

Keywords
Clinical research, isobaric

Proof data for you to use