Application Note LECO

Instrument: Pegasus® GC-HRT' EMPOWERING RESULTS

Enhancing of a Powerful Discovery Tool with a Novel
Multi-Mode lon Source
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Introduction

For the past 10 years, LECO Corporation's High Resolution Time-of-Flight (GC-HRT") mass spectrometer has aided in the
advancement of forensics,'” environmental science,’® metabolomics,*” food/flavor,*” and energy'’research. The coupling of
robust and reproducible chromatography with high-resolving capabilities of the Folded Flight Path® (FFP®) mass analyzer has
expedited characterization of complex samples. This was accomplished through the reduction of matrix interferences,
improved automated processing, high mass accuracy and analysis of rich, comprehensive mass spectral data.

Recently, the introduction of a novel Multi-Mode Source™ (MMS™) has significantly enhanced the analyte assignment
capabilities of the HRT" by including both positive and negative chemical ionization modes to aid in the determination of
molecular formulae for a wider array of analytes. The utilization of one source for collection of complementary Electron
lonization (El), Positive Chemical lonization (PCl), and Electron Capture Negative lonization (ECNI) high resolution mass
spectral data has streamlined the characterization of complex samples. The MMS, together with ChromaTOF® brand software,
provides the advantages of automated optimization, easy transition between the three ionization modes, increased sensitivity
for soft ionization, improved chromatographic peak shape, and excellent retention time alignment (Figure 1).

In this application note, a mixture of EPA 8270 MegaMix and 525.3 Organochlorine pesticide (OCP) standards were analyzed
and the results were used to demonstrate the benefits of MMS ionization and high resolution time-of-flight mass spectrometry.
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Figure 1. El, PCI, and ECNI mass spectra for EPA Method 8270 MegaMix and 525.3 Oranochlorine Pesticide (OCP) standards.



Experimental

EPA 8270 MegaMix (Restek, Cat. No. 31686) and EPA Method 525.3 OCP Cal standards (Restek, Cat. No. 32542) were mixed

and diluted with dichloromethane to a concentration of 2 ng/uL. Data for this standard mixture were acquired using an MMS
and Pegasus GC-HRT" operating under the conditions shown in Table 1.

Table 1
Gas Chromatograph Agilent 7890B
Injection 1 uL Splitless, 250 °C
Carrier Gas He @ 1.0 mL/min, Corrected Constant Flow
Column Rxi-5ms, 30 m x 0.25 mm ID x 0.25 um
Temperature Program 40 °C (1 min) to 300 °C @ 10 °C/min; 10 min hold
Mass Spectrometer LECO Pegasus GC-HRT*
lonization Mode El PCI ECNI
Source Temperature (° C) 250 165 165
Electron Energy (eV) 70 140 130
Emission Current (mA) 0.5 0.1 0.05
CH, Flow Rate (mL/min) N/A 1.2 2.9
Acquisition Rate (Hz) 12 12 12
Mass Range (m/z) 45-1000 60-1000 30-1000

") Elecron lonisation (£): s

El is a universal, reproducible mode of

ionization that produces mass spectra that

correlate well with large, established R —

databases (e.g., NIST, Wiley). Furthermore,
it provides valuable fragmentation
information that is used for structural
characterization. The limitation of El is that

for some analytes, this mode is too 2 |
energetic, and often results in absent or
low intensity molecular ions, which makes 4 LECO

unknown identification challenging. For Multi-Mode Source
analytes that do not exhibit a molecular ion
via El, softer MMS ionization modes (PCI

and ECNI) can provide valuable molecular
information.

2) Positive Chemical lonization (PCI):

PCl is a soft ionization technique that

provides formula information for compounds that do not contain molecular ions in their El mass spectra. PCI occurs in
three major steps: 1) Primary ion formation, 2) reagent ion formation, and 3) adduct formation (Figure 2)."" In the first
step, reagent gas is ionized to produce cations and radical cations that react further to produce reagent ions which are

strong Lewis acids (Step 2). These acids then react with molecules to produce positively-charged molecular adducts
(Step 3).
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1) Primary ion formation: CH, + e® > CH,®® + CH,® + CH,®®* + CH® + (C®® +H.,®® + H®

2) Reagent ion formation: CH,®®* + CH, > CHs® + CHy
CH;® + CH, - CHs® + H,
CH; + CH;® 2 CiHs® + H,

3) Adduct Formation: M + CHs® = [MH]® + CH,
M + CHs® = [M+CH:]®
M + C3H:® = [M+C;Hg]®
AH + CHs® > A® + CH, + H,

Figure 2. The Major Steps of PCI: Primary lon, Reagent lons, and Adduct Formation.



3) Electron Capture Negative Chemical lonization (ECNI)

ECNI is an ideal ionization mode for compounds with high electron affinity. ECNI is a soft ionization mode that uses buffer
gases such as methane or argon to produce low energy electrons (Figure 3). The buffer reduces the energy of filament
generated electrons (e') through collisions to produce lower energy, “thermal electrons” (*e)."" The thermal electrons react with
electron poor (high electron affinity) molecules to produce anions via three different mechanisms: 1) Associative resonance
capture, 2) dissociative resonance capture, and 3) ion pair formation. The exact mechanism for ionization will depend on the
structural and electronic characteristics of the molecules subjected to ECNI.

Formation of Thermal Electrons (*e™ ): CH, (buffer gas)+ e 2 + CH," + "¢ +¢’
CH, (buffer gas)+ e = + CH3* + H' + & +e

1) Associative Resonance Capture: M+ % = M~
2) Dissociative Resonance Capture: M-X + * =2 M + X
3) lon-Pair Formation: M-X + *&@ = M* + X + ¢
Figure 3. Thermal Electron Formation and lon Formation and Three Mechanisms of ECNI: 1) A iative R Capture, 2) Dissociative

Resonance Capture and 3) lon-Pair Formation.

Results and Discussion

The examples shown in the narrative that follows represent data obtained using the MMS and different ionization modes for
representative compounds in the Megamix and OCP standard mixture. For example, the mass spectra for 2-nitrophenol, a
molecule with both an electron donating (-OH) and electron withdrawing group (-NO,), are compared in Figure 4. The El
spectrum compares favorably with its NIST database equivalent (Similarity = 879/1000). The mass accuracy for its molecular
ion is 0.10 ppm. The complementary PCl spectrum includes molecular adducts at m/z 140.03424 ([MH]*, 0.08 ppm),
168.06578 ([M+C,H.]", -1.43 ppm) and 180.06546 ([M+C,H,]", -0.33 ppm). In addition, there is a fragment ion at m/z =
122.02362 ([M-OH]*, -0.29 ppm). The isotopic fidelity, which is a comparison between the observed and theoretically
calculated ion isotope cluster for the protonated molecular ion, was 958 out of a possible perfect score of 1000.

There is significantly less fragmentation, and an intense molecular anion at m/z 139.02739 (-0.74 ppm) in the ECNI spectrum
for 2-nitrophenol. The isotopic fidelity for the radical anion was 990/1000. As mentioned in the experimental section, the exact
mechanism of ECNI depends on the structural and electronic characteristics of compounds. For example, the molecular anion
of 2-nitrophenol is formed via associative resonance capture while ionization of the pesticide lindane occurs through
dissociative resonance capture to produce an [M-CI] fragment ion (Figure 5). The base peak in the ECNI spectrum of lindane,
[CL,]', and a resonance-stabilized cation (not detected) are produced through ion-pair formation. The isotopic fidelity and mass
accuracy for the [M-Cl] anion in the spectrum for lindane were 987/1000 and 0.03 ppm respectively.
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Figure 4. El, PCI & ECNI Mass Spectral Data for 2-Nitrophenol.
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Figure 5. Comparison of ECNI Mass Spectral Data for 2-Nitrophenol & Lindane.

The El and PCI mass spectra for the electron-rich compound 2,4-dimethylphenol are displayed in Figure 6. The El mass spectra
has a NIST library similarity score of 941/1000 and a molecular ion mass accuracy of 0.28 ppm. The PCl spectrum exhibits
excellent isotopic fidelity (982/1000) with a mass accuracy of -0.46 ppm for the protonated molecular ion at m/z 123.06039.
The mass accuracy values for the corresponding [M+C,H,]"and [M+C,H,]" adducts were -0.14 and -0.19 ppm respectively.
Electron rich 2,4-dimethylphenol does not ionize under ECNI conditions.

There are electron deficient compounds in the standard mixture, such as 2-methyl-1,3-dinitrobenzene, that ionize in all three
modes (Figure 7). The molecular ion is absent in the El spectrum of 2-methyl-1,3-dinitrobenzene; but confident characterization
can be accomplished through analysis of the high resolution, accurate mass fragment ions, and spectral library searches
(864/1000). Fortunately, there is a strong protonated molecular ion at m/z 183.04002 (-0.07 ppm, Isotopic Fidelity 984/1000)
in the complementary PCl spectrum. This spectrum also contains additional adducts at m/z211.07105 ((M+C,H,]", -1.34 ppm)
and m/z 223.07135 ([M+C,H,]", 0.08 ppm). The ECNI spectrum has virtually no fragmentation, and an intense molecular
anion at m/z 182.03315 (-0.85 ppm, Isotopic Fidelity Score 982/1000). This anion is more intense (> 100X) than any of the ions
inthe El or PCl spectra.
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Figure 6. El and PCI Mass Spectral Data for 2,4-Dimethylphenol.
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Figure 7. El, PCI and ECNI Mass Spectral Data for 2-Methyl-1,3-Dinitrobenzene.
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The combination of El and ECNI analysis is exceptionally suited for the analysis of polyhalogenated organic compounds. For
example, this approach is ideal for the analysis of polychlorinated organic compounds. First, El data is used to identify these
compounds through a combination of spectral similarity searches and formula determinations using the high-resolution
accurate mass ions. Second, ECNI spectra with enhanced selectivity and sensitivity is produced for these electron deficient
compounds resulting in high-resolution spectra with intense anions that can be used to support the El results. The
implementation of this methodology is illustrated for endosulfan sulfate, chlordane and @ -endosulfan (Figures 8-10). The El
spectra for endosulfan sulfate, chlordane, and a-endosulfan exhibit excellent spectral similarity values (929, 945, and
909/1000). The molecular ion mass accuracies for endosulfan sulfate and chlordane were -0.33 and -0.10 ppm. There was no
molecular ion present in the El mass spectrum for « -endosulfan. Careful inspection of spectra demonstrates a decrease in
fragmentation and increase in sensitivity for each of these pesticides when transitioning from El to ECNI spectra. The
corresponding mass accuracy values for the ECNI generated molecular anions in the spectra for endosulfan sulfate, chlordane,
and a-endosulfan were 0.28, -0.62, and -0.97 ppm with isotopic fidelities of 996, 992, and 962/1000.
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Figure 8. El and ECNI Mass Spectral Data for Endosulfan Sulfate.
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Figure 10. EI and ECNI Mass Spectral Data for a-Endosulfan.
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Conclusion

The Pegasus GC-HRT" with MMS is a unique and powerful problem-solving tool for the analysis of complex samples. The
MMS source provides exceptional mass spectral data with excellent spectral similarity scores, accurate mass formulae
(<1 ppm) and high isotopic fidelity values for molecular, adduct, and fragment ion clusters. El data were utilized to
identify compounds through spectral similarity and formula determinations using high-resolution accurate mass ions.
PCl and ECNI spectra facilitated compound characterization by providing molecular information, in addition to improved
selectivity for compounds depending on their structural and electronic characteristics.
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