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Project Motivation
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Desirable 

aromas

Examples: 

cocoa, 

nutty, fruity

Undesirable 

aromas

Examples: 

sour, musty, 

vegetable



Coffee Complexity
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• Roasted coffee contains hundreds to 

thousands of compounds from a wide range 

of chemical classes

• The chemical composition of coffee is highly 

dependent on:

• Pre-harvest agricultural variables 

• Post-harvest processing and roasting 

conditions

Sunarharum, W.; Williams, D.; Smyth, H. Food Res. Int. 2014, 62, 325-325.



Coffee Complexity
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• Roasted coffee contains hundreds to 

thousands of compounds from a wide range 

of chemical classes

• The chemical composition of coffee is highly 

dependent on:

• Pre-harvest agricultural variables 

• Post-harvest processing and roasting 

conditions

• Defective beans can cause off-flavors and 

aromas in coffee

Moldy

Insect 

Damaged

Over-fermented

Toci, A.; Farah, A. Food Chem. 2014, 153, 298-314.



Potato Taste Defect (PTD)

• Sporadic flavor defect that affects coffee 
beans from the African Great Lakes region

• Linked to the presence of the antestia bug 
(Antestiopsis orbitalis)

• Contributes to a flavor of “dirty potato” in 
green and roasted coffee beans

• Hypothesized to be due to 2-isopropyl-3-
methoxypyrazine (IPMP)

Known PTD

Analyzed

Low PTD 

Occurrence

Jackels, S.C.; et al. J. Agric. Food Chem. 2014, 62, 10222–10229.

IPMP



Targeted Analysis of IPMP
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One-way ANOVA showed that the IPMP concentration was statistically different between the samples 

(p-value < 0.05)

Cain, C. N., et al. J. Agric. Food Chem., 2021, 69, 2253-2261.

13 clean samples

9 mild PTD samples

12 medium PTD samples

15 strong PTD samples

GC-MS

Are other volatiles in the headspace of roasted coffee also affected by PTD?



Aim and Methodology

• To fully characterize the volatile profile of PTD using comprehensive two-dimensional 
gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) and 
chemometrics
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Comparative Analysis of GC×GC-TOFMS Data
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Clean Coffee Sample

~ 500 peaks detected in the TIC chromatogram

Strong PTD sample appears to have less overall signal

Strong PTD Coffee Sample

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Comparative Analysis of GC×GC-TOFMS Data
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Clean Coffee Sample Strong PTD Coffee Sample

IPMPIPMP

1
12 2

3 3

Other identified analytes:

1. 2-ethyl-6-methylpyrazine (nutty, roasted)

2. 2,3-diethylpyrazine (nutty, roasted)

3. Linalool (floral, fruity)

There are a lot of fine 

differences between the coffee 

samples – too many to 

manually identify and quantify!

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Comparative Analysis of GC×GC-TOFMS Data
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Clean Coffee Sample

“How do we confidently discover the chemically relevant differences 
between two (or more) sample classes?” 

Strong PTD Coffee Sample

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Tile-Based Fisher Ratio (F-ratio) Analysis

A supervised, non-targeted method that discovers analytes that are statistically different in concentration 
between sample classes

12

Time, 1D

T
im

e
, 

2
D

Time, 1D

T
im

e
, 

2
D

Clean 

 

Strong 

PTD 

𝑭 − 𝒓𝒂𝒕𝒊𝒐 =
𝑩𝒆𝒕𝒘𝒆𝒆𝒏 𝑪𝒍𝒂𝒔𝒔 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆

σ 𝑾𝒊𝒕𝒉𝒊𝒏 𝑪𝒍𝒂𝒔𝒔 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆

Hit # F-ratio (1tR, 2tR)

1 High (x,y)

N Low (xN,yN)

Hit List

Marney, L. C.; et. al. Talanta, 2013, 115, 887-895.       

Parsons, B. A.; et. al. Anal. Chem., 2015, 87, 3812-3819. 



Results from Tile-Based F-ratio Analysis
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Visualization of the Signal Ratios

p-value < 0.01

p-value > 0.01

Visualization of the Final Hit List

Hit #2

IPMP

359 class-distinguishing compounds 

(p < 0.01) were discovered 

327 analytes had a higher abundance 

in the clean samples

32 analytes had a higher abundance 

in the strong PTD samples 

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Correlating Discovered Analytes to [IPMP]

• Let’s use Partial Least Squares (PLS) Regression to model [IPMP] with the F-ratio 
hits
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Partial Least Squares (PLS) Regression
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• Regression plot highlights the linear 

relationship between the measured 

property values and those predicted by 

the PLS model 

• Low measurements for the normalized 

root-mean-square errors indicates 

accurate prediction of [IPMP]

Clean

Mild

Medium

Strong

NRMSECV = 10.6 %

NRMSEP = 9.9 %

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Partial Least Squares (PLS) Regression

• Linear regression vector (LRV) 

describes how features in the 

chromatograms are related to [IPMP]
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Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Partial Least Squares (PLS) Regression
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LRV from PLS ModelProjection of the [Strong]/[Clean] 

Every analyte with a [Strong]/[Clean] > 1 is positively correlated with [IPMP]

Every analyte with a [Strong]/[Clean] < 1 negatively correlated with [IPMP]

Positive LRV 

Negative LRV

[S]/[C] > 1

[S]/[C] < 1

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Volatiles Downregulated by PTD
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Compound [Strong]/[Clean] Sensory Description

Pyrazine, 2,6-dimethyl- 0.56 Cocoa, nutty, roasted

2-Naphthalenol 0.60

3-Acetylpyrrole 0.60 Sweet, fruity

Furyl ethyl ketone 0.59 Fruity

2,7-Naphthalenediol 0.55

Pyrazine, 2-methyl-5-(1-propenyl)-, (Z)- 0.50

Pyrazine, 2-methyl-6-propyl- 0.31 Burnt, hazelnut, nutty

3(2H)-Benzofuranone, 7-methyl- 0.47

2,2'-Bifuran 0.45

3-Acetyl-2,5-dimethyl furan 0.52 Sweet, nutty, cocoa

3-Methyl-2-thiophenecarboxaldehyde 0.52 Sweet, saffron, honey

4-Hydroxybenzo[b]thiophene 0.54

2-Acetyl-3-methylpyrazine 0.10 Nutty, roasted, hazelnut

7-Benzofuranamine, 2-methyl- 0.55

2-Thiophenecarboxylic acid, 4-nitrophenyl 

ester
0.54

Thiophene, 2-phenyl- 0.29 Hazelnut, bready

Benzofuran, 2-methyl- 0.42 Burnt

PTD directly impacts the aroma associated 

with roasted coffee beans

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Volatiles Upregulated by PTD

Compound [Strong]/[Clean]

2,4-Di-tert-butylphenol 4.50

2,4-Diphenyl-4-methyl-2(E)-pentene 19.8

Decanal 1.63

1-Propene, 3-(2-cyclopentenyl)-2-methyl-1,1-

diphenyl-
29.8

Benzene, (1,3-dimethyl-3-butenyl)- Strong only

Propane, 2-cyclohexyl-2-phenyl- Strong only

2-Undecanone, 6,10-dimethyl- 1.36

Benzene, 1,1'-(1,1,2,2-tetramethyl-1,2-

ethanediyl)bis-
20.7

Acenaphthene 2.04

1,1'-Biphenyl, 3,4-diethyl- 1.43

1,1,3-Trimethyl-3-phenylindan 19.6

1,5,6,7-Tetramethyl-3-phenylbicyclo[3.2.0]hepta-2,6-

diene
15.1

1,3-Pentadiene, 1,1-diphenyl-, (Z)- 10.9

1,4-Benzenediol, 2,6-bis(1,1-dimethylethyl)- 1.38

Roasting

Increased chlorogenic acid

Increased phenols and phenylindanes

Microorganism 

growth

Antestia

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.



Conclusions

• IPMP concentrations were significantly different based on the severity of odor attributed to 
PTD 

• Tile-based F-ratio analysis discovered 359 analytes affected by PTD

• 327 analytes were elevated in the clean samples → many were linked to desirable aromas in coffee

• 32 analytes were elevated in the PTD impacted samples

• Use of F-ratio results resulted in accurate prediction of [IPMP] concentration with PLS 
regression

• Changes in the volatile profile of coffee beans can heighten the odor severity and reveal 
potential pathways for PTD

20Cain, C. N., et al. J. Agric. Food Chem., 2021, 69, 2253-2261.

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.
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