Uncovering the Volatile Profile of Potato Taste Defect in Roasted Arabica Coffee using GC-MS, GC×GC-MS, and Chemometrics

<u>Caitlin N. Cain¹</u>, Meriem Gaida², Pierre-Hugues Stefanuto², Jean-François Focant², Kristen J. Skogerboe³, and Robert E. Synovec¹

¹ Department of Chemistry, University of Washington, Seattle, WA, USA

² MolSys Research Unit, University of Liège, Liège, Belgium

³ Department of Chemistry, Seattle University, Seattle, WA, USA

15th Multidimensional Chromatography Workshop

Project Motivation

WAPO.ST/WONKBLOG

Source: Google Trends

cocoa, nutty, fruity

Coffee Complexity

- Roasted coffee contains hundreds to thousands of compounds from a wide range of chemical classes
- The chemical composition of coffee is highly dependent on:
 - Pre-harvest agricultural variables
 - Post-harvest processing and roasting conditions

Coffee Complexity

Over-fermented

- Roasted coffee contains hundreds to • thousands of compounds from a wide range of chemical classes
- The chemical composition of coffee is highly dependent on:
 - Pre-harvest agricultural variables
 - Post-harvest processing and roasting ٠ conditions
- Defective beans can cause off-flavors and • aromas in coffee

Potato Taste Defect (PTD)

- Sporadic flavor defect that affects coffee beans from the African Great Lakes region
- Linked to the presence of the antestia bug (Antestiopsis orbitalis)
- Contributes to a flavor of "dirty potato" in green and roasted coffee beans
 - Hypothesized to be due to 2-isopropyl-3methoxypyrazine (IPMP)

Targeted Analysis of IPMP

One-way ANOVA showed that the IPMP concentration was statistically different between the samples (p-value < 0.05)

Are other volatiles in the headspace of roasted coffee also affected by PTD?

Aim and Methodology

 To fully characterize the volatile profile of PTD using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) and chemometrics

Time, ¹D

Time

Comparative Analysis of GC×GC-TOFMS Data

~ 500 peaks detected in the TIC chromatogram

Strong PTD sample appears to have less overall signal

Comparative Analysis of GC×GC-TOFMS Data

Other identified analytes:

- 1. 2-ethyl-6-methylpyrazine (nutty, roasted)
- 2. 2,3-diethylpyrazine (nutty, roasted)
- 3. Linalool (floral, fruity)

There are a lot of fine differences between the coffee samples – **too many** to manually identify and quantify!

Comparative Analysis of GC×GC-TOFMS Data

"How do we confidently discover the chemically relevant differences between two (or more) sample classes?"

Tile-Based Fisher Ratio (F-ratio) Analysis

A supervised, non-targeted method that discovers analytes that are statistically different in concentration between sample classes

Marney, L. C.; et. al. *Talanta*, **2013**, *115*, 887-895. Parsons, B. A.; et. al. *Anal. Chem.*, **2015**, 87, 3812-3819.

Results from Tile-Based F-ratio Analysis

Correlating Discovered Analytes to [IPMP]

 Let's use Partial Least Squares (PLS) Regression to model [IPMP] with the F-ratio hits

Partial Least Squares (PLS) Regression

- Regression plot highlights the linear relationship between the measured property values and those predicted by the PLS model
- Low measurements for the normalized root-mean-square errors indicates accurate prediction of [IPMP]

Partial Least Squares (PLS) Regression

2

• Linear regression vector (LRV) describes how features in the chromatograms are related to [IPMP]

Partial Least Squares (PLS) Regression

Every analyte with a [Strong]/[Clean] > 1 is positively correlated with [IPMP] Every analyte with a [Strong]/[Clean] < 1 negatively correlated with [IPMP]

Volatiles Downregulated by PTD

Compound	[Strong]/[Clean]	Sensory Description
Pyrazine, 2,6-dimethyl-	0.56	Cocoa, nutty, roasted
2-Naphthalenol	0.60	
3-Acetylpyrrole	0.60	Sweet, fruity
Furyl ethyl ketone	0.59	Fruity
2,7-Naphthalenediol	0.55	
Pyrazine, 2-methyl-5-(1-propenyl)-, (<i>Z</i>)-	0.50	
Pyrazine, 2-methyl-6-propyl-	0.31	Burnt, hazelnut, nutty
3(2H)-Benzofuranone, 7-methyl-	0.47	
2,2'-Bifuran	0.45	
3-Acetyl-2,5-dimethyl furan	0.52	Sweet, nutty, cocoa
3-Methyl-2-thiophenecarboxaldehyde	0.52	Sweet, saffron, honey
4-Hydroxybenzo[b]thiophene	0.54	
2-Acetyl-3-methylpyrazine	0.10	Nutty, roasted, hazelnut
7-Benzofuranamine, 2-methyl-	0.55	
2-Thiophenecarboxylic acid, 4-nitrophenyl ester	0.54	
Thiophene, 2-phenyl-	0.29	Hazelnut, bready
Benzofuran, 2-methyl-	0.42	Burnt

PTD directly impacts the aroma associated with roasted coffee beans

Volatiles Upregulated by PTD

Increased phenols and phenylindanes

Cain, C. N., et al. Microchem. J., 2024, 196, 109578.

Conclusions

- IPMP concentrations were significantly different based on the severity of odor attributed to PTD
- Tile-based F-ratio analysis discovered 359 analytes affected by PTD
 - 327 analytes were elevated in the clean samples \rightarrow many were linked to desirable aromas in coffee
 - 32 analytes were elevated in the PTD impacted samples
- Use of F-ratio results resulted in accurate prediction of [IPMP] concentration with PLS regression
- Changes in the volatile profile of coffee beans can heighten the odor severity and reveal potential pathways for PTD

Acknowledgements

Principal Investigator

• Dr. Robert Synovec

Synovec Lab Members

- Caitlin Cain
- Lina Mikaliunaite
- Austin Dobrecevich
- Robert Halvorsen
- Wenjing Ma
- Haylee Meissner
- Cassandra Padilla
- Owen Lee
- Arty Manafe
- Peri Abdigali
- Jakob Klein

Univ. of Liège Collaborators

- Meriem Gaida
- Pierre-Hugues Stefanuto
- Jean-François Focant

Seattle Univ. Collaborators

- Kristen Skogerboe
- Susan Jackels

NSF Graduate Research Fellowship DGE-1762114