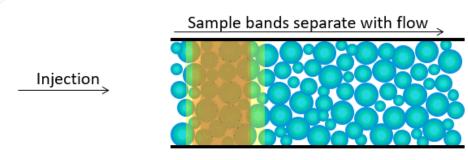


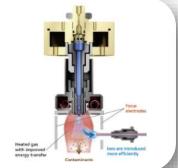
Will LC-MS/MS become the workhorse in environmental laboratories? Its applications for protecting public health.

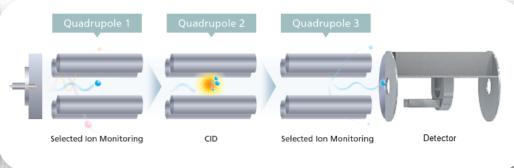
Ruth Marfil-Vega, PhD
Senior Market Manager - Environmental

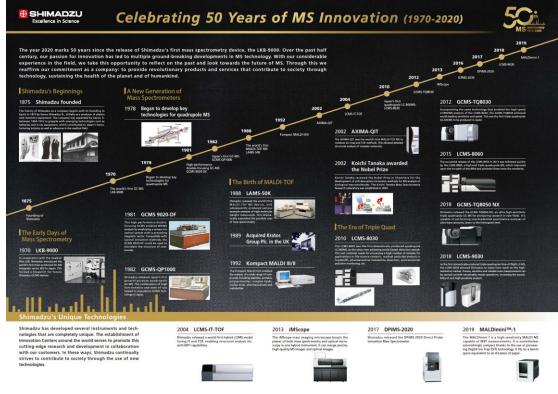
Topics for today's presentation: LC-MS/MS

- 1. Presence in Environmental Labs.
- 2. Applications for protecting public health.
- 3. Myths about LC-MS/MS.




What is LC-MS/MS?

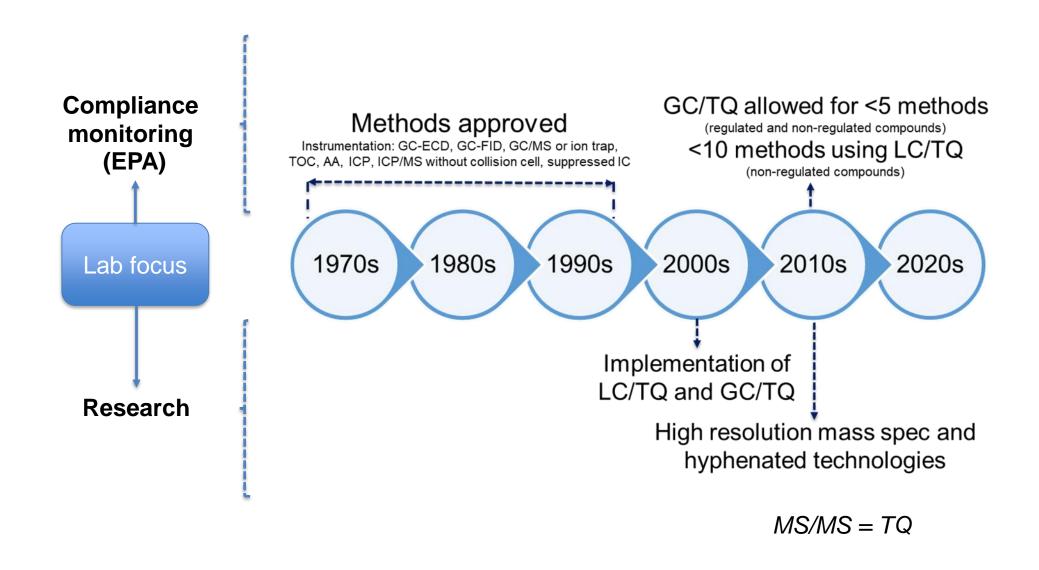

LC-MS/MS: Liquid Chromatography Tandem Mass Spectrometry



(LC)MS/MS History

Investigator(s)	Year	Contribution
Thomson	1899-1911	First mass spectrometer
Dempster	1918	Electron ionization and magnetic focusing
Aston	1919	Atomic weights using MS
Stephens	1946	Time-of-flight mass analysis
Hipple, Sommer, and Thomas	1949	Ion cyclotron resonance
Johnson and Nier	1953	Double-focusing_instruments
Paul and Steinwedel	1953	Quadrupole analyzers
Beynon	1956	High-resolution MS
Biemann, Cone, Webster, and Arsenault	1966	Peptide sequencing
Munson and Field	1966	Chemical jonization
Dole	1968	Electrospray ionization
Beckey	1969	Field desorption MS of organic molecules
MacFarlane and Torgerson	1974	Plasma desorption MS
Comisarow and Marshall	1974	FT-ICR MS
Yost and Enke	1978	Triple quadrupole MS
Barber	1981	Fast atom bombardment (FAB)
Tanaka, Karas, and Hillenkamp	1983	Matrix-assisted laser desorption/ionization
Fenn	1984	ESI on biomolecules
Chowdhury, Katta, and Chait	1990	Protein conformational changes with ESI M
Mann and Wilm	1991	MicroESI
Ganem, Li, and Henion Chait and Katta	1991	Noncovalent complexes with ESI MS
Pieles, Zurcher, Schär, and Moser	1993	Oligonucleotide ladder sequencing
Henzel, Billeci, Stults, Wong, Grimley, and Watanabe	1993	Protein mass mapping
Siuzdak, Bothner, Fuerstenau, and Benner	1996-2001	Intact viral analysis

LC-MS/MS is a mature technique that has been widely commercialized for several decades.



https://www.shimadzu.com/an/news-events/celebrating_50_years/history.html

Chemistry Chronicles: A Mass Spec Timeline (https://masspec.scripps.edu/research/pdf/90_art.pdf)

Why is LC-MS/MS less commonly used than other techniques?

A real life example

Analysis of estrogens in water

2003: SPE + GC/MS with 2 steps derivatization

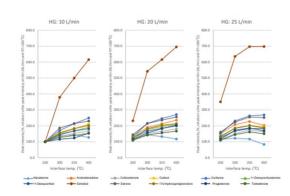
MOX and BSTFA >16 h derivatization

2007:

SPE + LC/MS/MS with and without derivatization

Dansyl chloride

15 min derivatization


2013:

SPE + LC/MS/MS for UCMR3

Direct injection after SPE

2021:

Direct injection reaching lower detection limits

Applications for protecting public health: PFAS

Safeguard Our Water from PFAS: Analytical Methods at a Glance **EPA 537 & ASTM ASTM** Method **EPA 8327 EPA 8328 EPA 8329 EPA 533** D7979-19 D7968-19 537.1 Meets DOD QSM Ground/ EPA 8327 + Soil Soil Drinking Surface/ Surface/ Drinking Sample Soil, Sediment, Sediment Sediment Waste Water Waste Water Water Water Sludge Sludge Sludge Effluent Effluent Solvent Solid phase Solid phase Cosolvation + Cosolvation + Sample Solvent extraction + Direct extraction extraction direct direct extraction + Preparation solid phase injection (anionic (polymeric sorbent) injection injection direct injection clean-up sorbent) External calibration Isotopic External Internal standard (2 MRMs + ion External dilution External Isotopic calibration Quantitation calibration ratio) (if analog calibration calibration dilution (2 MRMs + ion (1 MRM) Isotopic dilution available) ratio) optional 25 25 EPA 537 - 14 24 **Targets** 21 (EPA 8327 + (Mostly outside 21 (EPA 537 + 10)(EPA 537 + 10)EPA 537.1 - 18 EPA 537.1) GenX) Shimadzu's Triple Quad LCMS-8045 or LCMS-8050 or LCMS-8050 or LCMS-8050 or LCMS-8045 or LCMS-8050 or LCMS-8045 or Platform LCMS-8050 LCMS-8060 LCMS-8060 LCMS-8060 LCMS-8050 LCMS-8060 LCMS-8050 www.OneLabOneEarth.com vood Drive, Columbia, MD 21046 Ph: 410-381-1227 / 800-477-1227 SHIMADZU

Applications for protecting public health: Aquatic toxins

Cyanotoxins (EPA 544 and EPA 545)

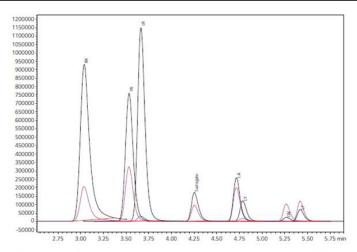


Figure 1. TIC of 100 ng/mL standard displaying target and reference ions for all compounds.

Missassis	Ouant MPM	Cal range	r ²	Lake Erie	Spl (ng/mL)	Lake Erie Spl (ng/mL)		
Microcystin	Quant MRM	ng/mL	I-	Spike	Calc amt	Spike	Calc amt	
RR	519.90>135.15	0.1 - 100	0.9915	1	0.937	50	49.3	
YR	523.40>135.10	0.1 - 100	0.9993	1	1.012	50	48.2	
LR	498.40>135.10	0.1 - 100	0.9994	1	0.993	50	48.3	
LA	910.40>776.25	0.1 - 100	0.9977	1	0.951	50	45.6	
LY	1002.50>135.25	0.5 - 100	0.9969	1	0.913	50	45.6	
LW	1025.50>135.20	0.5 - 100	0.9979	1	0.894	50	45.4	
LF	986.50>478.30	0.5 - 100	0.9985	1	0.943	50	45.4	

Marine Toxins

Paralytic Shellfish Poisoning (PSP)	Diarrheic Shellfish Poisoning (DSP)	Ciguatera Fish Poisoning (CFP)
Serious effects. Fatal toxic symptoms.	Diarrhea and/or vomiting. Not so serious conditions.	Fatal toxic symptoms (in the limited area)
LC-MS/MS in Japan &EU	MBA in Japan Fluorescence HPLC method in addition to MBA in EU and the USA (AOAC 2005.06 & 2011.02)	Review of regulatory frameworks
OA:0.16 mg OA eq/ kg *1.	4 MU/g as MBA STX 0.8 mg STX eq /kg * ¹ (as 2 HCI)	

*1 CODEX STAN 292-2008.

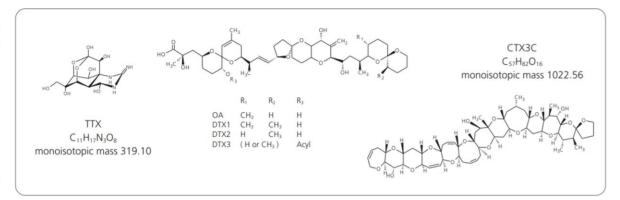
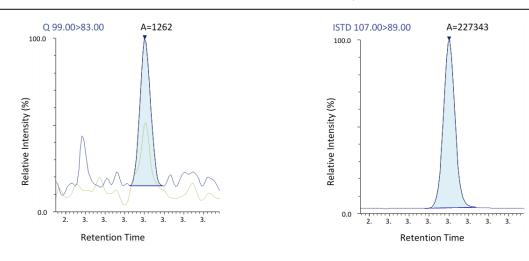



Figure 1. Structure of marine toxins

Applications for protecting public health: Perchlorate

EPA 6850: Perchlorate in Water, Soils and Solid Wastes

Chromatogram of perchlorate at 50 ppt (lowest concentration in calibration curve) using optimized conditions.

Robert English¹, Kristin Neir²
¹Shimadzu Scientific Instruments
²ALS Global, Houston, TX, USA

Validation of modified method EPA 6850 for analysis of perchlorate in both non-potable water and soil samples. The implemented modifications were within those allowed by EPA's guidelines.

	Samples							Theoretical	Mean	Mean					
	A B C D E F G		G	Value	Value	Recovery	Std Dev	MDLc	MDLr	RSD	LOD				
Soil (ug/kg)	0.915	0.774	1.067	0.993	0.947	1.015	1.015	1.0	0.96	96%	0.10%	0.302	0.300	10.01%	1.2
Water (ug/L)	0.123	0.128	0.103	0.098	0.106	0.116	0.124	0.1	0.11	114%	0.01%	0.036	0.036	10.04%	0.144

	Perchlorate	Spiked	Sample	Sample	Sample	Sample	le Avg Std	g Std Dev	Precision	Recovery	Precision Limit	Recovery Limits
		Value	1	2	3	4						
	Soil (ug/kg)	100	88.2	88.4	88.6	88	88.3	0.25	0.3	88.30%	±15	85-115
	Water (ug/L)	10	8.83	8.97	8.9	8.86	8.89	0.06	0.7	88.90%	±15	85-115

Applications for protecting public health: Pesticides

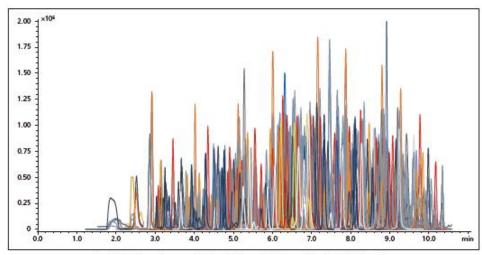


Fig. 1 MRM chromatograms of 646 pesticides spiked into a mint extract at 0.01 mg/kg (Up to 3 MRMs per compound and 5 msec polarity switching time).

Application News

No.C135

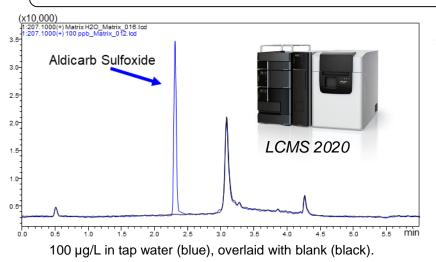
Liquid Chromatography Mass Spectrometry

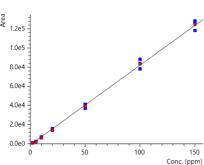
Shimadzu Pesticide MRM Library Support for LC/MS/MS

David R. Baker, Alan Barnes, Neil Loftus Shimadzu Corporation, UK

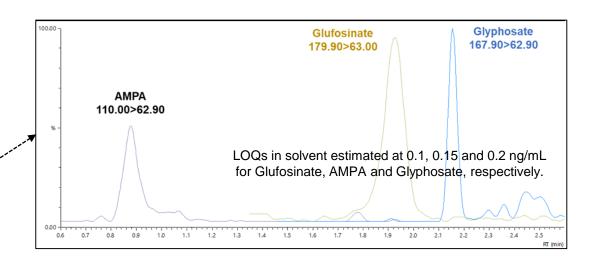
Application News

No.C136


Liquid Chromatography Mass Spectrometry


Expanding Capabilities in Multi-Residue Pesticide Analysis Using The LCMS-8060

David R. Baker¹, Laëtitia Fages², Eric Capodanno², Neil Loftus¹ ¹Shimadzu Corporation, UK; ²Phytocontrol, France


Quantification of Glyphosate, Glufosinate, and AMPA in Food via In-vial Addition of Pairing Agent Uwe Oppermann¹, Stephane Moreau¹, Doriane Toinon² ¹Shimadzu Europa GmbH, Germany ²Shimadzu Corporation, Japan

Alternatives for carbamates and glyphosate?

Cal curve: 2 μg/L to 150 μg/L. y=831.135x-1016.97 R2=0.9986, R=0.9993

Applications for protecting public health: WBE

WBE: Wastewater Based Epidemiology

- A tool to provide real-time information on consumption of legal and illegal drugs of abuse by the population.
- It is expected to achieve more ambitious objectives such as establishing exposure to certain agents, incidence of specific diseases, and determination of some lifestyle consequences or environmental factors in populations.

Adapted from Lorenzo & Pico, Wastewater-based epidemiology: current status and future prospects, Current Opinion in Environmental Science & Health, Volume 9, 2019.

ubs.acs.org/est

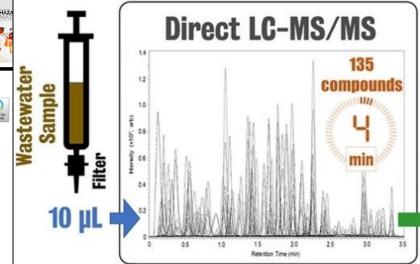
Viewpoint

Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19

Aaron Bivins, Devin North, Arslan Ahmad, Warish Ahmed, Eric Alm, Frederic Been, Prosun Bhattacharya, Lubertus Bijlsma, Alexandria B. Boehm, Joe Brown, Gianluigi Buttiglieri, Vincenza Calabro, Annalaura Carducci, Sara Castiglioni, Zeynep Cetecioglu Gurol, Sudip Chakraborty, Federico Costa, Stefano Curcio, Francis L. de los Reyes, III, Jeseth Delgado Vela, Kata Farkas, Xavier Fernandez-Casi, Charles Gerba, Daniel Gerrity, Rosina Girones, Raul Gonzalez, Eiji Haramoto, Angela Harris, Patricia A. Holden, Md. Tahmidul Islam, Davey L. Jones, Barbara Kasprzyk-Hordern, Masaaki Kitajima, Nadine Kotlarz, Manish Kumar, Keisuke Kuroda, Giuseppina La Rosa, Francesca Malpei, Mariana Mautus, Sandra L. McLellan, Gertjan Medema, John Scott Meschke, Jochen Mueller, Ryan J. Newton, David Nilsson, Rachel T. Noble, Alexander van Nuijs, Jordan Peccia, T. Alex Perkins, Amy J. Pickering, Joan Rose, Gloria Sanchez, Adam Smith, Lauren Stadler, Christine Stauber, Kevin Thomas, Tom van der Voorn, Krista Wigginton, Kevin Zhu, and Kyle Bibby*

Journal of Hazardous Materials 398 (2020) 122933

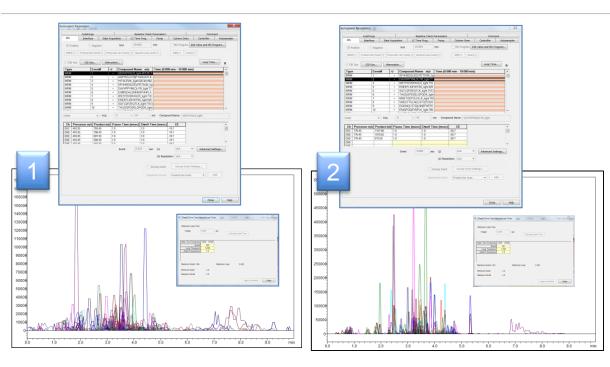
Contents lists available at ScienceDirect


Journal of Hazardous Materials

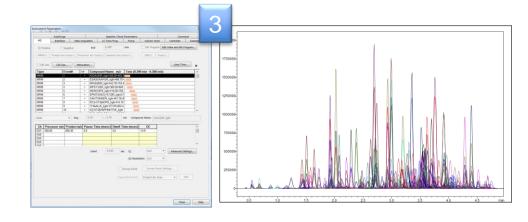

journal homepage: www.elsevier.com/locate/jhazmat

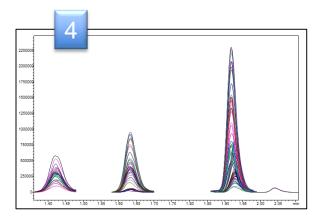
High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography-tandem mass spectrometry

Keng Tiong Ng^{a,1}, Helena Rapp-Wright^{a,b,1}, Melanie Egli^a, Alicia Hartmann^{a,c}, Joshua C. Steele^{d,h,j}, Juan Eduardo Sosa-Hernández^e, Elda M. Melchor-Martínez^e, Matthew Jacobs^b, Blánaid White^b, Fiona Regan^b, Roberto Parra-Saldivar^e, Lewis Couchman^f, Rolf U. Halden^{d,h,l,j}, Leon P. Barron^{a,g,*}


- ^a Dept. Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
- ^b DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
- c Hochschule Fresenius, Limburger Straße 2, Idstein, Hessen, Germany
- d Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA
- e Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
- Analytical Services International, St George's University of London, London, United Kingdom
- 8 Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- h School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
 ¹ OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA
- AquaVitas, LLC, 9260 E. Raintree Dr., Ste 140, Scottsdale, AZ 85260, USA

Myths about LC/MS/MS - Method development

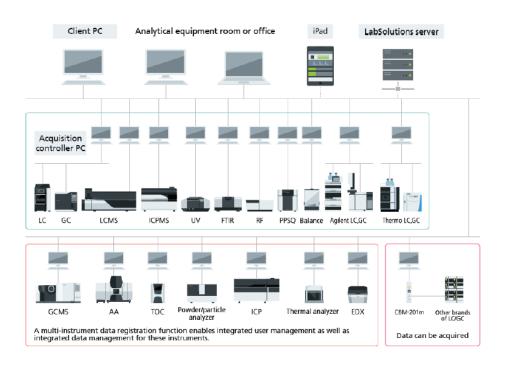



It's complex.

Software tools help with the creation of MRMs.

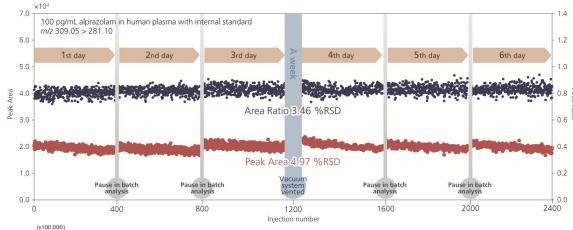
- 1. Initial MRMs screen
- 2. MRMs selection based on RT and intensity
- 3. Confirmation scheduled MRMs
- 4. Collision Energy Optimization
- 5. Method confirmation

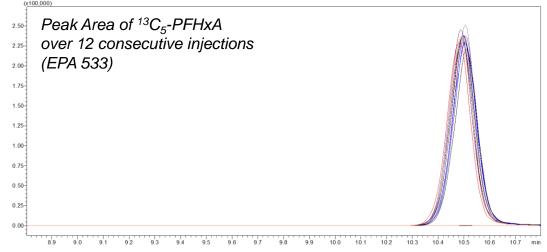
Myths about LC/MS/MS - Data Processing


It's tedious and LC/MS/MS cannot be connected to CDS.

Workflows developed for automating data process and review and increasing sample throughput.

Connectivity to same software platform as other instruments, available.





Myths about LC/MS/MS – Sensitivity

It's too sensitive and signal fluctuates over time.

Sensitivity allows for achieving lower detection limits. Good laboratory practices and the use of internal standards help with maintaining robustness.

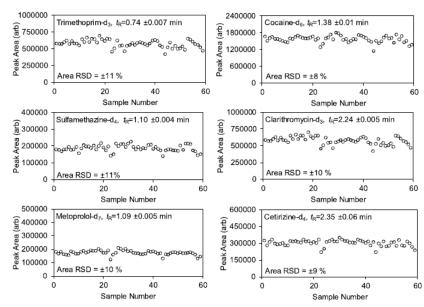
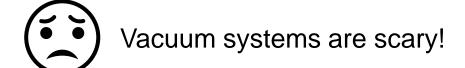
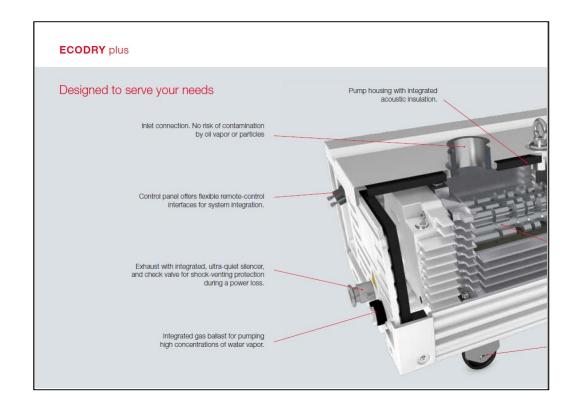
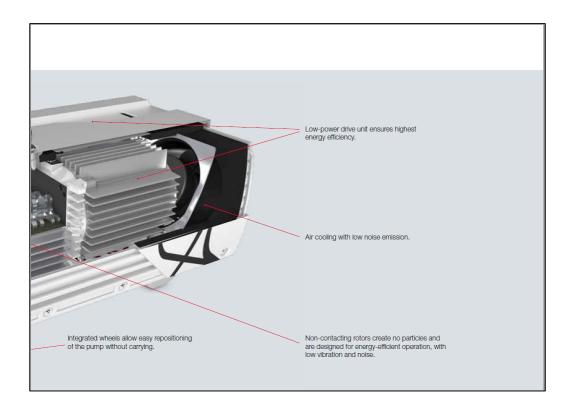
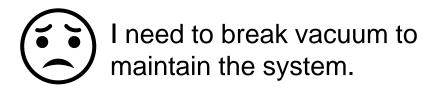



Fig. 3. Peak area and retention time stability for selected SIL-IS over a sequence of n = 59 spiked London wastewater samples (500 ng L⁻¹) and measured using direct LC-MS/MS analysis over a total batch analysis time of 6.4 h.

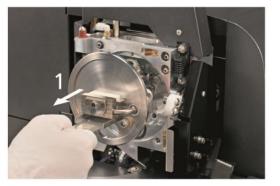
KT Ng et al., J Hazardous Materials, 398, 2020, 122933




Myths about LC/MS/MS – Vacuum


Turbo pumps rarely fail. Newer dry pumps are easier to maintain (and make less noise!).

Myths about LC/MS/MS – Maintenance





Routine maintenance can be done by the analyst without the need to break vacuum.

Source cleaning

Desolvation line replacement

ESI Capillary source replacement

Take home messages

- LC-MS/MS are common instruments in environmental labs.
- Broad range of applications are suitable for LC-MS/MS analysis.
 Productivity is increased.
- Good laboratory practices and latest technology developments ease operations.

Visit OneLabOneEarth.com

Ruth Marfil-Vega, PhD rmmarfilvega@shimadzu.com