Quantitative Determination of Multi-Class Multi-Residue Pesticides in Edible Oil Using Captiva EMR-Lipid Cleanup by GC/MS/MS

Limian Zhao¹, Melissa Churley²

¹Agilent Technologies Inc., 2850 Centerville Road, Wilmington, DE 19808, USA; limian zhao8@agilent.com

² Agilent Technologies Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA; melissa churley@agilent.com

Introduction

The analysis of fat-soluble pesticides in edible oil at low levels remains a challenge where much effort is placed on the efficient cleanup on lipid interferences. Captiva Enhanced Matrix Removal—Lipid (EMR—Lipid) sorbent is a novel sorbent material that selectively removes major lipid classes from sample matrix without unwanted analytes loss. The lipid removal mechanism provided by EMR—Lipid sorbent is based on the combination of size exclusion and hydrophobic interaction between lipid compounds and the unique sorbent.

This study investigates the sample preparation using EMR-Lipid cartridge cleanup for the analysis of 46 representative and challenging pesticides by GC/MS/MS in edible oils; including olive oil, corn oil, soybean oil and canola oil. The fat-soluble pesticide recoveries were improved by using a more hydrophobic solvent mixture 20:80 ethyl acetate/ACN and a two-step extraction. The low water content (20%) required for EMR-Lipid cartridge use reduced the risk of hydrophobic analyte loss during sample cleanup. The EMR-Lipid cartridge cleanup allows the use of a stronger solvent for sample extraction and provides efficient lipid Agilent Captiva cleanup despite higher co-extractive concentration with more Accuracy Begins Here. providing significantly sample for GC/MS/MS analysis.

Results and Discussion

Pesticides and Edible Oil Matrix

Classification	Pesticides	Classification	Pesticides	Classification	Pesticides
Organophosphate	Dichlorvos	Organochlorine	Lindane	Sulphamide	Dichlorfluanid
	Trichlorfon		Aldrin		Tolylfluanid
	Sulfotep		Endrin	Phthalimide	Captan
	Diazinon		Endosulfan		Folpet
	Chlorpyriphos-Me		DDT		Captafol
	Phosmet		Oxychlordane	Dicarbosimide	Procymidone
	Coumaphos		Mirex	Pyrimidinol	Bupirimate
	Malathion	Pheonl	2-Phenylphenol	Dicarboximide	Iprodione
	Parathion	Dinitroaniline	Ethalfluralin		Permethrin
	Dimethoate	Chloronitrile	Chlorothalonil		Deltamethrin
	Fenamiphos	Pyridazinone	Norflurazon	Pyrethroid	Esfenvalerate
	Terbufos sulfone	Pyridine	Thiazopyr	-	Fenvalerate
	Chlorpyriphos		Atrazin		Bifenthrin
		Tuissing	D .		

Results and Discussion

Agilent Technologies

Experimental

Instrumental Parameters for GC/MS/MS

Oxazole	Vinclozolin	Iriazine	Prometryne	Strobilurin	Pyraclostrobin
Uracil	Bromacil		Propazine	Carbamate	Thiobencarb
				Diphenyl ether	Nitrofen

Olive oil Corn oil Canola oil Soybean oil

Figure 4. Typical calibration curve linearity for pesticides oil at range of 1 - 500ng/mL in edible oil.

Statistical Results for Method Validation in Four Oil Matrices

Figure 5. Statistical results on method accuracy and precision for method validation spiking at three levels, low level (1/5 ng/mL in oil), mid level (10 ng/mL in oil) and high level (100 ng/mL in oil), for total of n=18 in four edible oil matrices, respectively. Each column represents the analytes resulting in the corresponding range for accuracy or precision (RSD) category.

GC Parameters

- Agilent 7980B GC
- Agilent HP-5ms Ultra Inert, 0.25 mm x 15 m, 0.25 µm (two)
- Helium, constant flow (1.0 mL/min column 1, 1.2 mL/min column 2)
- Agilent Ultra Inert single taper splitless liner with wool
- MMI inlet at pulsed cold splitless mode, 60°C to 300°C at 600°C/min
- Pulsed splitless injection
- Oven: 60°C for 2.57 min, then to 150°C at 50°C/min, to 200°C at 6°C/min, to 300°C at 16°C/min, hold for 3 min; Post-run: 2 min at 300°C
- 1 µL injection volume

- dMRM mode
 - Transfer line temp: 280°C
 - Source temp: 280°C
 - Quad temp: 150°C for Q1
 - Solvent delay: 3 min
 - Collision gas flow: He quench gas at 2.35 mL/min, N_2 collision gas at 1.5 mL/min

QQQ Parameters

- MS resolution: MS1 and MS2 = 1.2u

Figure 1. GC/MS/MS chromatogram of representative pesticides (1 compound from each class, except 3 and 4 compounds from OC and OP classes) in olive oil spiked with 1 ng/mL (LOQ).

S	implified Workflow	
Olive Oil	Olive Oil extract	
	LLE x 2	
	Supernatant for GC/MS/MS analysis Image: Comparison of the strength of the s	

Figure 2. Olive oil sample appearance step by step prepared by LLE followed with Captiva EMR-Lipid cartridge cleanup.

Acceptable Analyte Recovery

Efficient Oil Matrix Removal

		Olive oil	Corn oil	Soybean oil	Canola oil
No cleanup (mg/mL oil crude extract, n=2)		7.64	16.11	14.49	8.44
aptiva EMR- ipid cleanup	Residue (mg/mL oil extract, n=2)	1.14	0.34	0.16	0.08
	Matrix removal (%)	85%	98%	99%	99%
QuEChERS dSPE C18 cleanup	Residue (mg/mL oil extract, n=2)	3.47	6.05	9.68	4.36
	Matrix removal (%)	55%	62%	33%	48%

Conclusions

A simple, rugged and reliable method using liquidliquid extraction followed with EMR-Lipid cartridge cleanup was developed and validated for the multiclass, multi-residue analysis of pesticides in olive oil, corn oil, soybean oil and canola oil.

✓ Optimized liquid-liquid extraction improved extraction

Figure 3. Pesticides absolute recovery (no IS correction) at spiking level of 10 ng/mL in olive oil.

- efficiency for fat soluble none-polar pesticides in oil.
- ✓ Captiva EMR-Lipid cartridge cleanup provides highly efficient lipids removal on oil extract.
- Acceptable analyte recoveries (60-120%) were obtained for > 95% pesticides.
- ✓ Simplified workflow and product easy use
- Excellent method accuracy, precision and linearity for reliable quantitation.
- \checkmark Method validation in common edible oil matrices.

Check our website for more information: www.agilent.com/chem/EMR-Lipid

