Detecting Hydrocarbons in Sand after Huntington Beach Oil Spill Using Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

Elena Mosham, Petr Vozka*

Project supported by CSU Council on Ocean Affairs, Science & Technology (COAST), Award #: COAST-RR-2021-03

Background: Huntington Beach Oil Spill

- Pipeline connecting Long Beach and Elly drilling platform burst
- Ten day beach closure post oil spill
 - City officials stated that toxic compounds were not detected in sand and ocean water
- Skepticism throughout the public

Figure 1. Image taken after oil spill. Adapted from "2021 Orange County Oil Spill Response", 2021.

Goal: Determine how hydrocarbon compounds in the Huntington Beach sand change monthly for a year using solid-phase microextraction (SPME) with a combination of gas chromatography-mass spectrometry (GC-MS)

Background: Huntington Beach Oil Spill

- Pipeline connecting Long Beach and Elly drilling platform burst
- Ten day beach closure post oil spill
 - City officials stated that toxic compounds were not detected in sand and ocean water
- Skepticism throughout the public

Figure 1. Image taken after oil spill. Adapted from "2021 Orange County Oil Spill Response", 2021.

Goal: Determine how hydrocarbon compounds in the Huntington Beach sand change monthly for a year using solid-phase microextraction (SPME) with a combination of gas chromatography-mass spectrometry (GC-MS)

Background: Huntington Beach Oil Spill

- Pipeline connecting Long Beach and Elly drilling platform burst
- Ten day beach closure post oil spill
 - City officials stated that toxic compounds were not detected in sand and ocean water
- Skepticism throughout the public

Figure 1. Image taken after oil spill. Adapted from "2021 Orange County Oil Spill Response", 2021.

Goal: Determine how hydrocarbon compounds in the Huntington Beach sand change monthly for a year using solid-phase microextraction (SPME) with a combination of gas chromatography-mass spectrometry (GC-MS)

- Sample Collection
 - Once a month: right and left side of HB pier
 - 100 ft in front of closest lifeguard stands
 - Eight Samples: 4 surface level; 4 8 in below surface
- Sample Preparation
 - Desiccated; 2 g in 20 mL headspace glass vial
 - Incubate: 5 mins at 80 °C
- SPME fiber
 - Divinylbenzene/Polydimethylsiloxane fiber
 - Precondition: 5 mins at 250 °C
 - Sample Extraction: 10 mins in incubator

- Sample Collection
 - Once a month: right and left side of HB pier
 - 100 ft in front of closest lifeguard stands
 - Eight Samples: 4 surface level; 4 8 in below surface
- Sample Preparation
 - Desiccated; 2 g in 20 mL headspace glass vial
 - Incubate: 5 mins at 80 °C
- SPME fiber
 - Divinylbenzene/Polydimethylsiloxane fiber
 - Precondition: 5 mins at 250 °C
 - Sample Extraction: 10 mins in incubator

- Sample Collection
 - Once a month: right and left side of HB pier
 - 100 ft in front of closest lifeguard stands
 - Eight Samples: 4 surface level; 4 8 in below surface
- Sample Preparation
 - Desiccated; 2 g in 20 mL headspace glass vial
 - Incubate: 5 mins at 80 °C
- SPME fiber
 - Divinylbenzene/Polydimethylsiloxane fiber
 - Precondition: 5 mins at 250 °C
 - Sample Extraction: 10 mins in incubator

- Sample Collection
 - Once a month: right and left side of HB pier
 - 100 ft in front of closest lifeguard stands
 - Eight Samples: 4 surface level; 4 8 in below surface
- Sample Preparation
 - Desiccated; 2 g in 20 mL headspace glass vial
 - Incubate: 5 mins at 80 °C
- SPME fiber
 - Divinylbenzene/Polydimethylsiloxane fiber
 - Precondition: 5 mins at 250 °C
 - Sample Extraction: 10 mins in incubator

- GC: HP-5ms GC column
 - Sample Injection: 2 mins
 - Oven Temperature: 40 °C to 300 °C at a ramp of 20 °C min⁻¹
 - Helium Flow: 1.3 mL min⁻¹
- MS: Agilent 5977B
 - Transfer Line: 250 °C
 - Scanning Range: 50-500 amu sec⁻¹; full scan mode
 - Electron Voltage: 70 eV
 - Source and Quad Temperatures: 230 °C and 150 °C, respectively
 - Scanning: 1.7 scans sec⁻¹
- Agilent MSD Productivity ChemStation for GC and GC/MS System
 - Using the NIST 2020 Mass Spectral Library Database with a Match Factor (Similarity Index scores) threshold of 500

Figure 3. Image of fiber injection in GC inlet.

- GC: HP-5ms GC column
 - Sample Injection: 2 mins
 - Oven Temperature: 40 °C to 300 °C at a ramp of 20 °C min⁻¹
 - Helium Flow: 1.3 mL min⁻¹
- MS: Agilent 5977B
 - Transfer Line: 250 °C
 - Scanning Range: 50-500 amu sec⁻¹; full scan mode
 - Electron Voltage: 70 eV
 - Source and Quad Temperatures: 230 °C and 150 °C, respectively
 - Scanning: 1.7 scans sec⁻¹
- Agilent MSD Productivity ChemStation for GC and GC/MS System
 - Using the NIST 2020 Mass Spectral Library Database with a Match Factor (Similarity Index scores) threshold of 500

Figure 3. Image of fiber injection in GC inlet.

- GC: HP-5ms GC column
 - Sample Injection: 2 mins
 - Oven Temperature: 40 °C to 300 °C at a ramp of 20 °C min⁻¹
 - Helium Flow: 1.3 mL min⁻¹
- MS: Agilent 5977B
 - Transfer Line: 250 °C
 - Scanning Range: 50-500 amu sec⁻¹; full scan mode
 - Electron Voltage: 70 eV
 - Source and Quad Temperatures: 230 °C and 150 °C, respectively
 - Scanning: 1.7 scans sec⁻¹
- Agilent MSD Productivity ChemStation for GC and GC/MS System
 - Using the NIST 2020 Mass Spectral Library Database with a Match Factor (Similarity Index scores) threshold of 500

Figure 3. Image of fiber injection in GC inlet.

- GC: HP-5ms GC column
 - Sample Injection: 2 mins
 - Oven Temperature: 40 °C to 300 °C at a ramp of 20 °C min⁻¹
 - Helium Flow: 1.3 mL min⁻¹
- MS: Agilent 5977B
 - Transfer Line: 250 °C
 - Scanning Range: 50-500 amu sec⁻¹; full scan mode
 - Electron Voltage: 70 eV
 - Source and Quad Temperatures: 230 °C and 150 °C, respectively
 - Scanning: 1.7 scans sec⁻¹
- Agilent MSD Productivity ChemStation for GC and GC/MS System
 - Using the NIST 2020 Mass Spectral Library Database with a Match Factor (Similarity Index scores) threshold of 500

Figure 3. Image of fiber injection in GC inlet.

- GC: HP-5ms GC column
 - Sample Injection: 2 mins
 - Oven Temperature: 40 °C to 300 °C at a ramp of 20 °C min⁻¹
 - Helium Flow: 1.3 mL min⁻¹
- MS: Agilent 5977B
 - Transfer Line: 250 °C
 - Scanning Range: 50-500 amu sec⁻¹; full scan mode
 - Electron Voltage: 70 eV
 - Source and Quad Temperatures: 230 °C and 150 °C, respectively
 - Scanning: 1.7 scans sec⁻¹
- Agilent MSD Productivity ChemStation for GC and GC/MS System
 - Using the NIST 2020 Mass Spectral Library Database with a Match Factor (Similarity Index scores) threshold of 500

Figure 3. Image of fiber injection in GC inlet.

Hydrocarbon Detection

Month -	Surface		8 inches below the surface	
	Right	Left	Right	Left
Oct.		2-Methylindene	1000 1702	-
Dec.	Heptadecane Octadecane	-	1724	Hexadecane Heptadecane
Jan.	-	-	Dodecane Tetradecane Hexadecane	Dodecane Tetradecane Pentadecane Hexadecane Heptadecane
June	9-Octadecene		2 5 5	

- *n*-alkenes and *n*-alkanes detected in early months of the year
- no toxic hydrocarbons detected

Biodegradation

- Degradation of hydrocarbons occurs through oxidation
- Algae in water assists with oxidation
- Rapid biodegradation
- Next: Further analyze biodegradation and concentrations of hydrocarbons as the year progresses

Month -	Surface		8 inches below surface	
	Right	Left	Right	Left
Oct.	-		Nonanal	0.20
Nov.	Phthalic acid, isobutyl 2-methylpent-3-yl ester	Phthalic acid, hex-3- yl isobutyl ester	-	Phthalic acid, isobutyl 2- methylpent-3-yl ester
Dec.	Heptanal Nonanal Cinnamaldehyde Nonanoic acid Pentadecanal	Nonanal	Nonanal	-
Jan.	Heptanal Nonanal	Heptanal Nonanal Benzoic acid, 2,5- dinitro-	Heptanal Nonanal	Heptanal Nonanal Decanal Nonanoic acid
Mar.	Cinnamaldehyde	Nonanal n-Hexadecanoic acid	n-Hexadecanoic acid	0.0
Apr.	-	2	- 3 - 3	Nonanal n-Hexadecanoic acid
May	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid
June	Nonanal Nonanoic acid <i>n</i> -Hexadecanoic acid Octadecanoic acid	Heptanal Nonanal <i>n</i> -Hexadecanoic acid	Heptanal Nonanal Nonanaoic acid n-Hexadecanoic acid	n-Hexadecanoic acid
July	Hexathiane n-Hexadecanoic acid	Hexathiane n-Hexadecanoic acid	Hexathiane n-Hexadecanoic acid	340)
Aug.	Heptanal Nonanal		-	Nonanal

Biodegradation

- Degradation of hydrocarbons occurs through oxidation
- Algae in water assists with oxidation
- Rapid biodegradation
- Next: Further analyze biodegradation and concentrations of hydrocarbons as the year progresses

Month -	Surface		8 inches below surface	
	Right	Left	Right	Left
Oct.	-		Nonanal	0.20
Nov.	Phthalic acid, isobutyl 2-methylpent-3-yl ester	Phthalic acid, hex-3- yl isobutyl ester	-	Phthalic acid, isobutyl 2- methylpent-3-yl ester
Dec.	Heptanal Nonanal Cinnamaldehyde Nonanoic acid Pentadecanal	Nonanal	Nonanal	-
Jan.	Heptanal Nonanal	Heptanal Nonanal Benzoic acid, 2,5- dinitro-	Heptanal Nonanal	Heptanal Nonanal Decanal Nonanoic acid
Mar.	Cinnamaldehyde	Nonanal n-Hexadecanoic acid	n-Hexadecanoic acid	0.0
Apr.	-	2	- 3 - 3	Nonanal n-Hexadecanoic acid
May	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid
June	Nonanal Nonanoic acid <i>n</i> -Hexadecanoic acid Octadecanoic acid	Heptanal Nonanal <i>n</i> -Hexadecanoic acid	Heptanal Nonanal Nonanaoic acid n-Hexadecanoic acid	n-Hexadecanoic acid
July	Hexathiane n-Hexadecanoic acid	Hexathiane n-Hexadecanoic acid	Hexathiane n-Hexadecanoic acid	340)
Aug.	Heptanal Nonanal		-	Nonanal

Biodegradation

- Degradation of hydrocarbons occurs through oxidation
- Algae in water assists with oxidation
- Rapid biodegradation
- Next: Further analyze biodegradation and concentrations of hydrocarbons as the year progresses

Month -	Surface		8 inches below surface	
	Right	Left	Right	Left
Oct.	-		Nonanal	0.20
Nov.	Phthalic acid, isobutyl 2-methylpent-3-yl ester	Phthalic acid, hex-3- yl isobutyl ester	-	Phthalic acid, isobutyl 2- methylpent-3-yl ester
Dec.	Heptanal Nonanal Cinnamaldehyde Nonanoic acid Pentadecanal	Nonanal	Nonanal	-
Jan.	Heptanal Nonanal	Heptanal Nonanal Benzoic acid, 2,5- dinitro-	Heptanal Nonanal	Heptanal Nonanal Decanal Nonanoic acid
Mar.	Cinnamaldehyde	Nonanal n-Hexadecanoic acid	n-Hexadecanoic acid	0.0
Apr.	-	2	- 3 - 3	Nonanal n-Hexadecanoic acid
May	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid	Nonanal n-Hexadecanoic acid
June	Nonanal Nonanoic acid <i>n</i> -Hexadecanoic acid Octadecanoic acid	Heptanal Nonanal <i>n</i> -Hexadecanoic acid	Heptanal Nonanal Nonanaoic acid n-Hexadecanoic acid	n-Hexadecanoic acid
July	Hexathiane n-Hexadecanoic acid	Hexathiane n-Hexadecanoic acid	Hexathiane n-Hexadecanoic acid	340)
Aug.	Heptanal Nonanal		-	Nonanal

Organic Compounds Adsorbed on Microplastics (MPs)

MPs standards

Polypropylene (PP)

GC-TOFMS

PDMS Fiber, 7 µm

Organic Compounds Adsorbed on Microplastics (MPs)

MPs standards

Polypropylene (PP)

GC-TOFMS

PDMS Fiber, 7 µm

Organic Compounds Adsorbed on Microplastics (MPs)

MPs standards

Polypropylene (PP)

GC-TOFMS

PDMS Fiber, 7 µm