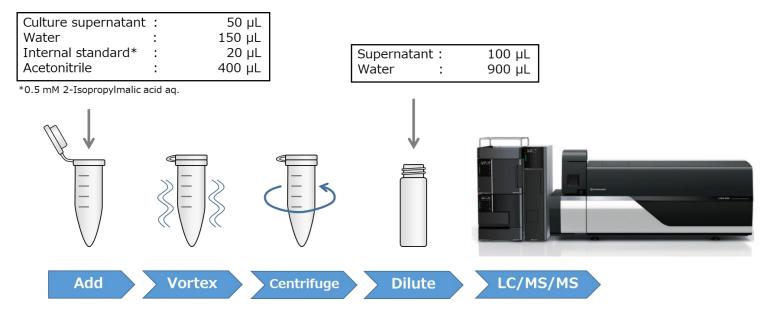
SHIMADZU

Development of cell culture supernatant analysis using LC-MS/MS and their application for Chinese hamster ovary cell


Kenichi Toyoda¹, Hirotaka Kuroda¹, Takashi Suzuki¹, Toru Ezure¹ 1 Shimadzu Corporation. 1, Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604–8511, Japan

1. Introduction

Optimization of cell culture process is crucial to improve the productivitv quality of biopharmaceuticals. Infrared and spectroscopy and biosensor are used for analyzing cell culture fluid during culture process. While these methods are simple and short in measurement time, the measurement items are limited to pH, dissolving gases, and major small compounds such as glucose, glutamine, and lactic acid. Therefore, a simultaneous analysis method including trace components such as vitamins in the culture medium and secreted metabolites has been required for examining culture process in detail. We have developed simultaneous analysis method up to 125 compounds in 17 minutes using LC-MS/MS. In this poster, we present features of our developed method and its applications for Chinese hamster ovary cell.

2. Methods

CHO cell culture fluid were collected every 24 hours. The collected culture fluid was centrifuged to remove cell debris, and the supernatant was used as a sample. The supernatant samples were deproteinized by the addition of acetonitrile and centrifugation. The supernatant after centrifugation was collected and diluted 10 fold with ultrapure water to serve as an analytical sample (Fig.1).

Sample preparation Figure 1

We have developed the LC-MS/MS Method Package for Cell Culture Profiling Ver.2 (Shimadzu Corp, Japan). This product enables us to analyze simultaneously 125 compounds including basal medium components and secreted metabolites. The list of target compounds were shown in Table I. In this research, We used Nexera X3 with LCMS-8060.

Table 1 Target compounds				
Amino acids and	their metabolites	Nucleic acids and their		
5-Oxoproline	Glycyl-glutamine	metabolites		
1-Methylhistidine	Histidine	Adenine		
2-Aminoadipic acid	Homocysteine	Adenosine		
2-Aminobutyric acid	Hydroxykynurenine	Adenosine monophosphate		
3-Hydroxyanthranilic acid	Hydroxylysine	Deoxyadenosine		
3-Hydroxyisobutyric acid	Indole-3-acetic acid	Deoxyadenosine monophosphate		
3-Methyl-2-oxovaleric acid	Isoleucine	Deoxyguanosine		
3-Methylhistidine	Kynurenic acid	Deoxyguanosine monophosphate		
4-Aminobutyric acid	Kynurenine	Guanine		
4-Hydroxyphenyllactic acid	Leucine	Guanosine		
4-Hydroxyproline	Lysine	Guanosine monophosphate		
5-Glutamylcysteine	Methionine	Hypoxanthine		
5-Hydroxytryptophan	Methionine sulfoxide	Inosine		
5'-Methylthioadenosine	N-Acetylaspartic acid	Inosine monophosphate		
Alanine	N-Acetylcysteine	Uric acid		
Alanyl-glutamine	Ornithine	Xanthine		
Anthranilic acid	Oxidized glutathione	Xanthosine		
Arginine	Phenylalanine	Xanthosine monophosphate		
Argininosuccinic acid	Pipecolic acid	3-Aminoisobutyric acid		
Asparagine	Proline	3-Aminopropanoic acid		
Aspartic acid	Putrescine	Cytidine		
Citrulline	Saccharopine	Cytidine monophosphate		
Cystathionine	S-Adenosylhomocysteine	Cytosine		
Cysteine	Serine	Deoxycytidine		
Cystine	Serotonin	Deoxycytidine monophosphate		
Formylkynurenine	Threonine	Orotic acid		
Glutamic acid	Tryptophan	Thymidine		
Glutamine	Tyrosine	Thymidine monophosphate		
Glutathione	Urocanic acid	Thymine		
Glycine	Valine	Uracil		
Glycine	valine	Uridine		
Sugars	Others	Uridine monophosphate		
Gluconic acid	2-ketoglutaric acid			
Hexose (Glucose)	Acotinic acid			
Sucrose	Citric acid			
Threonic acid	Fumaric acid			
	Isocitric acid			
Vitamins	Lactic acid			
Riboflavin	Malic acid			
Niacinamide	Pyruvic acid			
Nicotinic acid	Succinic acid			
Pantothenic acid	Penicillin G			
4-Pyridoxic acid	2-Aminoethanol			
Pyridoxal	Glyceric acid			
Pyridoxalphosphate	NAD			
Pyridoxine	O-Phosphoethanolamine			
Biotin	Taurine			
4-Aminobenzoic acid				
Folic acid	Internal Standard			
Choline	2-Isopropylmalic acid			
Ascorbic acid				
Cyanocobalamin				
Lipoic acid				

Table 1 Target compounds

3. Results

3-1. General performance

The linearity of the major compounds in cell culture supernatant was evaluated to examine the quantification performance of the developed method. We confirmed that the quantitative ranges of the components contained in the culture supernatant were present in the high concentration range, and those of the trace components were present in the low concentration range(Fig.2).

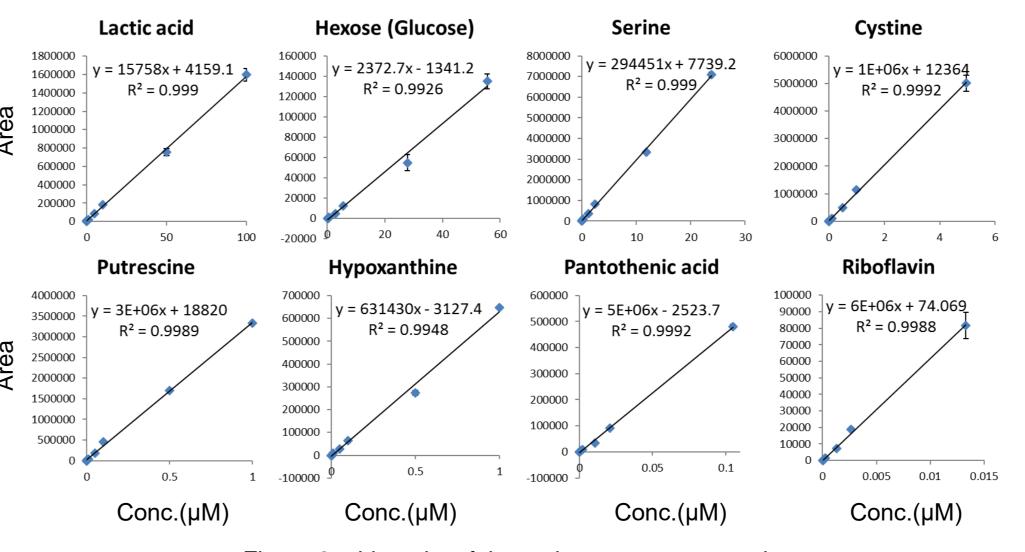
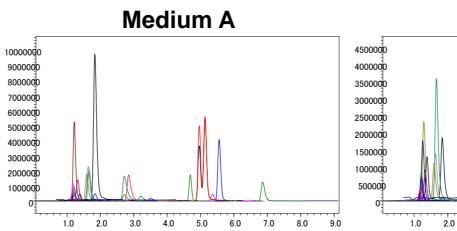
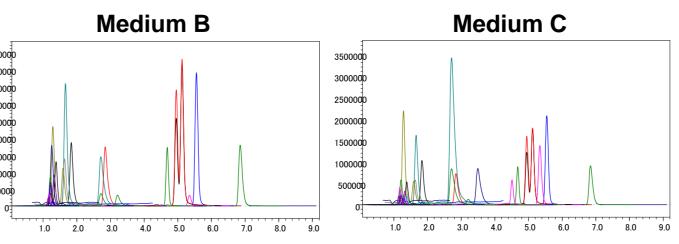




Figure 2 Linearity of the major target compounds

We analyzed 3 kinds of CHO cell culture media. good peak shapes were observed from high concentration components to trace components in the culture media(Fig.3), and analysis reproducibility with an area CV value of 10% or less was observed(Table. 2).



Figure 3 Chromatogram of 3 kinds of CHO cell culture media.

Table 2 Analysis reproducibility of 3 kinds of CHO cell culture media (n = 8)

	Average CV value	Max CV value
Medium A	2.71%	7.5% (Pantothenic acid)
Medium B	2.61%	7.86% (Pantothenic acid)
Medium C	3.5%	9.98% (Glutamic acid)

*Average CV value was calculated from the detected compounds above 100000 area.

3-2. Time course of culture supernatant of CHO cell

The culture supernatants of CHO cells were analyzed and the temporal change in signal intensity of the components was graphed. the signal intensity of sugars and amino acids decreased and that the signal intensity of metabolites such as lactic acid increased during cell culture process. For some amino acids and vitamins, the signal intensity did not increase or decrease during culture process. These results suggest that there are components that are preferentially consumed during the growth phase of CHO cells and components that are not involved in growth.

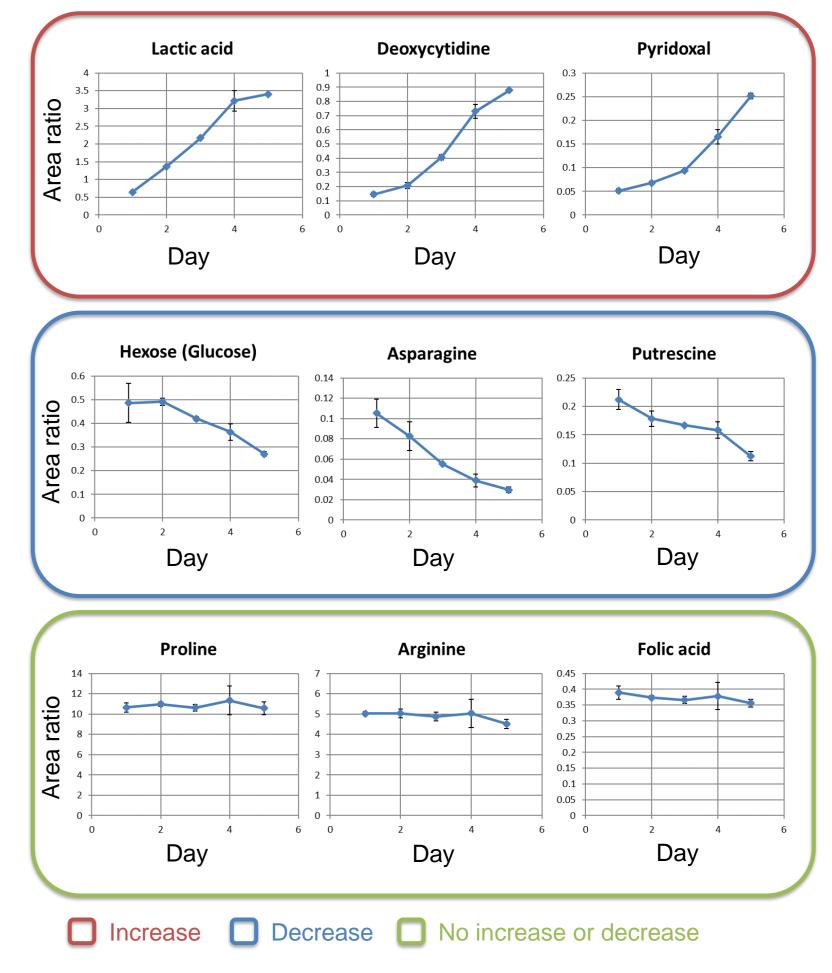
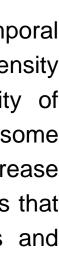



Figure 4 Time course of the major target compounds in CHO cell culture supernatant

4. Conclusions

•Our method has the potential to be an effective means to examine the detailed culture process of CHO cells.

