Comprehensive Characterization of Household Dust Samples Using a Multi-Mode Source, Enhanced Chromatographic Resolution, and High Resolution Mass Spectrometry

Introduction

- Humans spend most of their lifetimes indoors and are regularly exposed to harmful substances in dust
- Harmful chemicals include persistent organic pollutants, pesticides, polyaromatic hydrocarbons, and flame retardants
- In the past, dust analysis has primarily been conducted using targeted methods

Objective

To use enhanced chromatographic resolution, a novel multi-mode source, and high-resolution time-of-flight mass spectrometry for the comprehensive analysis of dust.

Analytical Platform

Figure 1. Pegasus[®] HRT⁺ 4D and Multi-Mode Source[™] (MMS[™])

Dust Sample Preparation

- Dust: 1) NIST SRM 2585, 2) Office Sample, and 3) Household Sample
- Extraction:

Figure 2. Dust General Extraction Procedure

Table 1. Pegasus HRT⁺ 4D Instrument Acquisition Parameters

Gas Chromatograph	Agilent 7890B with LECO Dual Stage QuadJet [™] Modulator
Injection	2 μ L liquid injection, Splitless, 70 $^{\circ}$ C to 300 $^{\circ}$ C at 500 $^{\circ}$ C/min
Carrier Gas	He @ 1.0 mL/min, Corrected Constant Flow
Primary Column	HP-5MS UI, 30 m x 0.25 mm i.d. x 0.25 μm
Secondary Column	BPX-50, 0.60 m x 0.10 mm x 0.10 μm
Temperature Program	80 °C (1 min) ramp 20 °C/min to 140 °C (Hold 30 min), then ramp to 200 °C at 10 °C/min, and ramp 1.5 °C/min to 300 °C (Hold 5 min). Secondary oven maintained +5 °C relative to primary oven
Modulation Period	8.0 seconds; modulator maintained +15 $^\circ$ C relative to secondary oven
Transfer Line	300 °C
Mass Spectrometer	LECO <i>Pegasus®</i> HRT+ 4D
Source Temperature	EI, 250 °C; PCI, ECNI, 165 °C
Acquisition Mode	High Resolution, $R \ge 25,000$ for m/z 219, Mass Accuracy ≤ 1 ppm
lonization	EI, PCI/ECNI (Reagent Gas = CH ₄)
Mass Range (m/z)	EI 50-1000; PCI 60-1000; ECNI 30-1000
Acquisition Rate	55EI3 200 sps; MMS 125 sps

David E. Alonso, Todd Richards, and Joseph E. Binkley; LECO Corporation, Saint Joseph, Michigan, USA

NIST SRM: EL, ECNI and PCI-HRT⁺ 4D Data

Figure 4. Contour Plot Displaying Some of the Major Compounds in NIST SRM 2585

----- Phthalates ------ Pyrenes ------ Chrysenes

	Benzyl alcohol	C ₇ H ₈ O
	p-Cresol	C ₇ H ₈ O
	Acetophenone	C ₈ H ₈ O
	Phenylethyl Alcohol	C ₈ H ₁₀ O
✓ Hydrocarbons	Octanoic acid	C ₈ H ₁₆ O ₂
, , , , , , , , , , , , , , , , , , ,	Oxazolidin-2-one	C ₃ H ₅ NO ₂
✓ Acids	Benzenamine, 2-methoxy-	C ₇ H ₉ NO
	3-Dodecene, (Z)-	C ₁₂ H ₂₄
1/ Aromatica	Benzaldehyde, 3,4-dimethyl-	C ₉ H ₁₀ O
 Aromatics 	p-Acetyltoluene	C ₉ H ₁₀ O
	Methyl salicylate	C ₈ H ₈ O ₃
✓ Amines	Naphthalene	C ₁₀ H ₈
	Ethanol, 2-phenoxy-	C ₈ H ₁₀ O ₂
✓ Alcohols		CH-NS
	1 Decapel	C H O
/ Aldobydoo	1H-Inden-1-one 23-dibydro-	CHO
 Aldenydes 	Indole	C ₉ H ₈ O
	5-Acetoxymethyl-2-furaldehyde	C.H.O.
✓ Ketones	Sesamol	C ₇ H ₆ O ₃
<pre>/</pre>	Benzamide	C ₇ H ₇ NO
✓ Phenols	Capric acid	C10H20O2
	Capric acid	C 10 H 20 O 2
/ Fatty Aaida	Benzaldehyde, 4-hydroxy-	$C_7H_6O_2$
rally Acius	Tropeolin	C ₈ H ₇ NS
	E-11,13-Tetradecadien-1-ol	C14H26O
✓ Sterols	2(3H)-Furanone, dihydro-5-pentyl-	C9H16O2
	1-Tetradecene	C ₁₄ H ₂₈
✓ Phosnhates	Dodecanal	C ₁₂ H ₂₄ O
	Coumarin	C ₉ H ₆ O ₂
Moro	Acenaphthylene	C ₁₂ H ₈
	1-Dodecanol	C ₁₂ H ₂₆ O
	Diisoputyi maleate	C ₁₂ H ₂₀ O ₄
	1-Dodecanamine, N,N-dimethyl-	C 114H31N
	Indecanal	U U HarO

Lauric acid

C ₇ H ₈ O	496, 2.064	890	β-Calacorene	C15H20	2168, 3.810	807
C ₇ H ₈ O	520, 2.112	826	n-Tridecan-1-ol	C13H28O	2184, 2.968	935
C ₈ H ₈ O	528, 2.143	942	Amyl salicylate	$C_{12}H_{16}O_3$	2192, 3.600	940
C ₈ H ₁₀ O	576, 2.344	884	Cetene	C 16H32	2248, 2.240	934
C8H16O2	608, 2.240	908	2-Tetradecanone	C14H28O	2264, 2.512	920
C ₃ H ₅ NO ₂	616, 3.967	950	Epicedrol	C15H26O	2304, 2.800	904
C ₇ H ₉ NO	640, 2.768	839	Diphenylamine	$C_{12}H_{11}N$	2344, 3.330	886
C12H24	648, 1.893	917	Benzophenone	C13H10	2360, 3.247	937
C ₉ H ₁₀ O	664, 2.592	888	Tributyl phosphate	$C_{12}H_{27}O_4P$	2400, 2.304	917
C ₉ H ₁₀ O	672, 2.678	937	Cinnamaldehyde, α-pentyl-	C14H18O	2400, 2.520	913
C ₈ H ₈ O ₃	688, 2.632	771	8-Heptadecene	C17H34	2464, 1.950	919
C10H8	688, 2.755	952	n-Hexyl salicylate	C13H18O3	2464, 2.448	929
C8H10O2	720, 3.064	809	Triaminotriazine	$C_3H_6N_6$	2472, 3.040	882
C ₇ H ₅ NS	752, 3.504	909	3-Phenoxy-4-fluorobenzaldehyde	C13H9EO2	2472, 3.064	886
C9H18O2	760, 2.648	873	Tetradecanenitrile	$C_{14}H_{27}N$	2488, 2.288	884
C10H22O	792, 2.456	920	4-(1,1-Dimethylheptyl)phenol	C ₁₅ H ₂₄ O	2512, 2.528	895
C ₉ H ₈ O	864, 4.076	815	Veramoss	$C_{10}H_{12}O_4$	2520, 3.040	902
C_8H_7N	880, 4.418	870	Oplopanone	$C_{15}H_{26}O_2$	2592, 2.816	803
C ₈ H ₈ O ₄	888, 4.200	915	Myristic acid	$C_{14}H_{28}O_2$	2616, 2.400	892
$C_7H_6O_3$	912, 4.422	754	Benzyl Benzoate	$C_{14}H_{12}O_2$	2640, 3.360	926
C ₇ H ₇ NO	968, 6.027	854	Vertofix Coeur	C ₁₇ H ₂₆ O	2656, 2.672	856
C 10 H 20 O 2	1008, 3.184	897	9-Eicosene, (E)-	C ₂₀ H ₄₀	2672, 2.053	903
C 10H20O 2	1016, 3.344	898	Benzenemethanol, 3-phenoxy-	$C_{13}H_{12}O_2$	2680, 3.688	842
$C_7H_6O_2$	1024, 5.384	935	1H-Indole-3-carboxaldehyde	C_9H_7NO	2720, 5.016	920
C ₈ H ₇ NS	1032, 5.216	864	Versalide	C ₁₈ H ₂₆ O	2840, 2.888	872
$C_{14}H_{26}O$	1064, 3.037	922	Methyl palmitate	$C_{17}H_{34}O_2$	2936, 2.455	795
C9H16O2	1064, 4.352	874	Palmitic acid	$C_{16}H_{32}O_2$	3016, 2.848	898
C14H28	1128, 2.600	944	Phenylethyl salicylate	$C_{15}H_{14}O_3$	3040, 3.920	854
$C_{12}H_{24}O$	1208, 3.352	916	Benzoguanamine	C ₉ H ₉ N ₅	3176, 5.963	825
C ₉ H ₆ O ₂	1408, 8.263	901	2-(2H-Benzotriazol-2-yl)-5-methylphenol	$C_{13}H_{11}N_{3}O$	3272, 4.584	845
C12H8	1472, 6.872	925	Fluoranthene	C 16H10	3272, 5.208	933
C12H26O	1504, 4.008	954	1-Octade canol	C ₁₈ H ₃₈ O	3280, 2.808	945
C12H20O4	1624, 4.464	900	Stearic acid	$C_{18}H_{36}O_2$	3464, 3.112	800
$C_{14}H_{31}N$	1704, 3.616	942	Hexadecanamide	$C_{16}H_{33}NO$	3512, 3.712	890
C13H26O	1744, 4.485	890	p-Terphenyl	C ₁₈ H ₁₄	3560, 5.192	822
C12H24O2	2120, 4.040	906	trans-3,5-Dimethoxystilbene	$C_{16}H_{16}O_2$	3656, 5.136	877

Name	Formula	R.T. (s)	Similarity
2,6-Diphenylpyridine	$C_{17}H_{13}N$	3672, 5.640	795
1,8-Diazacyclotetradecane-2,7-dione	$C_{12}H_{22}N_2O_2$	3704, 7.416	874
Tributyl acetylcitrate	C20H34O8	3712, 3.592	874
Tert-octyldiphenylamine	C ₂₀ H ₂₇ N	3776, 4.472	768
N-Methyl-N-benzyltetradecanamine	C ₂₂ H ₃₉ N	3864, 3.228	850
Methyl dehydroabietate	C21H30O2	3936, 4.576	864
Octadecanamide	C18H37NO	4016, 4.016	790
Benzo[ghi]fluoranthene	C ₁₈ H ₁₀	4072, 6.888	879
Triphenyl phosphate	$C_{18}H_{15}O_4P$	4080, 6.432	878
Diphenyl 2-ethylhexyl phosphate	C ₂₀ H ₂₇ O ₄ P	4152, 4.824	802
Isopropylphenyl diphenyl phosphate	$C_{21}H_{21}O_4P$	4432, 6.004	815
Benz[a]anthracene, 7-methyl-	C 19H14	4608, 7.312	865
Tri-m-tolylphosphate	$C_{21}H_{21}O_4P$	4800, 6.536	847
Tri-p-cresyl phosphate	$C_{21}H_{21}O_4P$	4880, 6.568	761
Perylene	C ₂₀ H ₁₂	5032, 8.200	924
Squalene	C 30 H 50	5152, 3.480	924
Cholesta-4,6-dien-3-ol, (3β)-	C ₂₇ H ₄₄ O	5272, 4.364	861
Cholesta-3,5-diene	C ₂₇ H ₄₄	5328, 4.288	910
Piperine	$C_{17}H_{19}NO_3$	5344, 8.344	921
17αH-Trisnorhopane	C ₂₇ H ₄₆	5384, 4.864	805
Benzo[b]chrysene	C ₂₂ H ₁₄	5416, 7.983	790
p,p'-Dioctyldiphenylamine	C ₂₈ H ₄₃ N	5456, 4.752	909
28-Nor-17α(H)-hopane	C 29H 50	5712, 4.632	900
Cholesterol	C ₂₇ H ₄₆ O	5848, 4.848	895
α-Tocopheryl acetate	C31H22O3	6040, 4.160	904
Cholesta-3,5-dien-7-one	C ₂₇ H ₄₂ O	6072, 5.394	922
Campesterol	C ₂₈ H ₄₈ O	6112, 4.872	844
Cholest-4-en-3-one	C ₂₇ H ₄₄ O	6160, 5.232	936
17α(H),21β(H)-Homohopane	C31H54	6168, 4.648	846
Stigmasterol	C ₂₉ H ₄₈ O	6184, 4.824	808
Cholesta-4,6-dien-3-one	C ₂₇ H ₄₂ O	6224, 5.416	876
y-Sitosterol	C ₂₉ H ₅₀ O	6320, 4.880	919
Stigmasta-3,5-dien-7-one	C29H46O	6528, 5.765	825
Cholesterol, 7-oxo-	C27H44O2	6568, 6.768	913

Ave. 880/1000

NIST SRM 2585: Halogenated Organic Compounds

Figure 5. Selected Halogenated Compounds In SRM 2585

Table 3. SRM 2585 Halogenated Compounds

Name	Formula	R.T. (s)	Similarity	Mass Accuracy (p)
Benzyl chloride	C ₇ H ₇ Cl	488, 1.952	873	0.87
Benzyl bromide	C_7H_7Br	560, 2.263	866	0.54
2-Chlorophenyl isocyanate	C ₇ H ₄ CINO	600, 2.264	927	0.31
3-Chlorophenol	C ₆ H ₅ CIO	664, 2.784	896	1.32
4-Chloroaniline	C ₆ H ₆ CIN	696, 3.160	913	1.52
p-Ethylbenzyl chloride	$C_9H_{11}CI$	704, 2.624	884	0.10
4-Chloroaniline	C ₆ H ₆ CIN	704, 3.184	816	1.13
p-Ethylbenzylchloride	$C_9H_{11}CI$	720, 2.704	931	0.21
α-Bromomesitylene	$C_9H_{11}Br$	912, 3.528	861	-0.23
3,4-Dichlorophenyl isocyanate	$C_7H_3Cl_2NO$	944, 3.358	820	1.93
2,5-Dichloroaniline	$C_6H_5CI_2N$	1352, 7.124	933	-0.25
1-Chlorododecane	$C_{12}H_{25}CI$	1504, 3.656	949	-0.80
Dodecane, 1-bromo-	$C_{12}H_{25}Br$	2096, 3.768	873	N/A
2',3',4'-Trichloroacetophenone	C ₈ H ₅ Cl ₃ O	2488, 2.976	781	N/A
TCEP	$C_6H_{12}CI_3O_4P$	2632, 3.392	893	N/A
ТСРР	$C_9H_{18}CI_3O_4P$	2704, 3.008	918	N/A
ТСРР	$C_9H_{18}CI_3O_4P$	2728, 3.064	816	N/A
Clorophene	$C_{13}H_{11}CIO$	2904, 4.120	824	1.22
TDCPP	$C_9H_{15}CI_6O_4P$	3912, 4.904	902	N/A
2,'3,4',6-Tetrabromodiphenyl ether	$C_{12}H_6Br_4O$	4384, 6.528	831	0.34
2,2',4,4',5,-Pentabromodiphenyl ether	$C_{12}H_5Br_5O$	5056, 7.296	892	-0.45

Ave. 876/1000

Figure 6. Peak True and Library El Mass Spectra for TDCPP And BDE-99 in SRM 2585

Figure 7. Pesticides in SRM 2585

Figure 8. Peak True and Library El Mass Spectra for Permethrine and trans-Chlordane in SRM 2585

Table 4. SRM 2585 Pesticides

Name	Formula	R.T. (s)	Similarity	Mass Accuracy (ppm
Chlorfenidim	$C_9H_{11}CIN_2O$	1632, 3.512	811	N/A
Diazinone	$C_{12}H_{21}N_2O_3PS$	2712, 2.872	818	-0.84
Carbaril	$C_{12}H_{11}NO_2$	2920, 4.696	818	N/A
Chlorpyrifos	$C_9H_{11}CI_3NO_3PS$	3104, 3.712	827	N/A
Thiabendazole	$C_{10}H_7N_3S$	3272, 6.424	929	0.66
trans-Chlordane	$C_{10}H_6CI_8$	3360, 4.136	788	N/A
cis-Chlorodane	$C_{10}H_6CI_8$	3440, 4.200	772	N/A
p,p'-DDE	$C_{14}H_8CI_4$	3544, 4.480	855	-0.62
Sumithrin (isomer 1)	$C_{23}H_{26}O_{3}$	4400, 5.184	871	-0.21
Sumithrin (isomer 2)	$C_{23}H_{26}O_{3}$	4432, 5.084	935	0.2
Permethrine	$C_{21}H_{20}CI_2O_3$	4840, 5.792	909	-0.28
Permethrine Isomer	$C_{21}H_{20}CI_2O_3$	4888, 5.816	914	-0.55
Cyfluthrin	$C_{22}H_{18}CI_2FNO_3$	5048, 5.624	751	N/A
Cyfluthrin (isomer 2)	$C_{22}H_{18}CI_2FNO_3$	5088, 5.584	805	N/A
Cyfluthrin (isomer 3)	$C_{22}H_{18}CI_2FNO_3$	5128, 5.560	817	N/A
α-Cypermethrin	$C_{22}H_{19}CI_2NO_3$	5160, 5.944	844	N/A
β-Cypermethrin	$C_{22}H_{19}CI_2NO_3$	5192, 5.936	883	N/A
Cypermethrin (isomer 3)	$C_{22}H_{19}CI_2NO_3$	5232, 5.904	869	N/A

Ave. 845/1000

NIST SRM: PCI and ECNI, Pesticides

Figure 9. MMS Operating in CI Mode (Left). Peak True Mass Spectra and Isotopic Fidelity for Permethrine (PCI) and trans-Chlordane (ECNI) in SRM 2585

ECNI: Locating Trace POPs in NIST, Office and House Dust

Figure 10. ECNI Contour Plot Displaying Selected POPs in SRM 2585

Figure 11. Processing Method Used to Locate Selected POPs in Dust

Table 5. Processing Results Listing POPs in SRM 2585, Office, and Household Dust

Target POP	R.T. (s)	NIST (area)	Office (area)	House (area)	Target POP	R.T. (s)	NIST (area)	Office (area)	House (area
C ₆ Cl ₆	2536, 2.872	66777	10364	485688	CB 6CI:4	3832, 4.640	285099	324443	
CN Cl4	2848, 3.304	13710			CB 6CI:5	3904, 4.872	85405	83716	
CN Cl4:2	2920, 3.568	143301			CB 6CI:6	3984, 5.096	280450	328292	
Chlordane Isomer 1	3208, 3.552	62129			CB 7Cl	4080, 4.864	149348	108803	
Heptachlor 1	3232, 4.128	15887			CB 7CI:2	4104, 4.952	68723	50837	
CB 4Cl	3272, 4.192	21645	8827		CB 6CI:7	4136, 5.632	39203	47433	
Heptachlor 2	3336, 4.360	215913			CB 6CI:8	4144, 4.976	27026	22346	
rans-Chlordane	3360, 4.112	1730979	3025	11470	CB 7CI:3	4208, 5.304	92038	91365	
CB 4CI:2	3368, 4.552	10321	1454		CB 7CI:4	4240, 5.376	38110	38962	
Chlordane Isomer 2	3392, 4.096	266412			CB 6CI:9	4272, 5.392	67431	66771	
B 5Cl	3400, 4.224	54160	50338		CB 7CI:5	4328, 5.120	26105	19932	
Nonachlor Isomer 1	3432, 3.848	9577			CB 7CI:6	4368, 5.200	397534	369028	
cis-Chlordane	3440, 4.176	624489			CB 7CI:7	4536, 5.720	86694	109695	
Nonachlor	3464, 3.888	596640		3023	CB 8Cl	4584, 5.312	119235	53370	
CB 5CI:2	3584, 4.720	44766	55571		CB 9Cl	4784, 5.416	13906		
CB 6Cl	3640, 4.536	23649	33324		CB 8CI:2	4792, 5.864	27430	15635	
CB 6CI:2	3648, 4.520	23937			CB 8CI:3	4912, 5.672	94752	58564	
CB 5CI:3	3712, 4.712	304119	305058		BDE-71	5056, 7.288	5480469	433778	663837
Nonachlor Isomer 3	3784, 4.656	98500			CB 9CI:2	5128, 5.720	51490	10114	
CB 6CI:3	3800, 4.576	44400	46349		CB-209	5312, 5.792	9879		

Summary

- HRT and MMS technology are valuable tools for the analysis of complex samples
- The highly ordered, comprehensive contour plots can be used to target trace POPs in dust with pinpoint accuracy
- POPs in Dust: SRM 2585 >> Office Dust > Household Samples