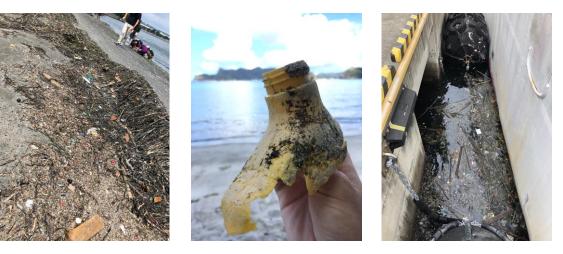
SHIMADZU

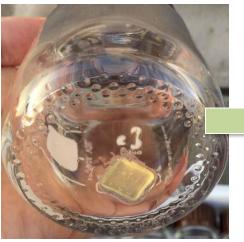

Investigation of Marine Degradation Characteristics of Bioplastics using MALDI-TOFMS and MALDI-DITMS

Takashi Nishikaze¹, Yuzo Yamazaki¹, Satoshi Wakai², Misato Tsukatani², Noriyuki Isobe², Hidetaka Nomaki², Mohammad Asif Ali³, Tatsuo Kaneko³ 2 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3 Japan Advanced Institute of Science and Technology (JAIST) 1 Shimadzu Corporation,

1. Introduction

Recently, the accumulation of plastic waste in the ocean has been known to have an adverse effect on marine environment and ecosystem. An ecological impact of microplastics ingested by marine animals is a current global concern. The other problem is "Ghost net" caused by abandoned fishing net made of plastics. Marine animals suffer from serious and direct damages through the entanglement by plastic fibers.

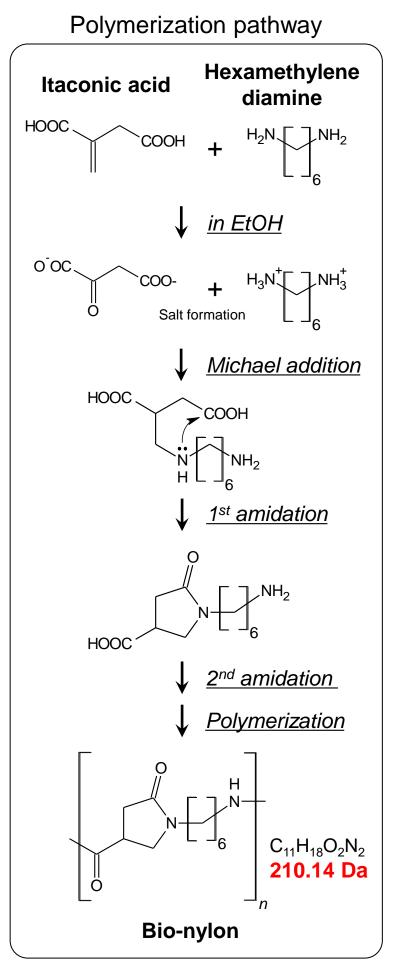
One solution for this is to replace conventional plastics by biodegradable plastics. A significant effort is being consecrated in tailoring the key properties of the biodegradable plastics such as physico-chemical properties and biodegradability in the marine environments. Here, marine degradation properties of a degradable nylon derived from a biomolecule, itaconic acid, were evaluated using MALDI-MS.


2. Methods

2-1. Newly designed polyamide

A newly designed polyamide (bio-nylon), which has photocleavable pyrrolidone rings and readily decomposes in water by ultraviolet irradiation, was used. This bio-nylon was made from **itaconic acid**, which can be produced by mold fermentation, and hexamethylene diamine.

2-2. Degradation of the bio-nylon


Photodegradation of the bio-nylon immersed in seawater was induced by exposing to sunlight for 14 days. This degradable bio-nylon immerged in water becomes hydrophilic by light irradiation, and finally dissolves in water completely. This was also true under the condition of sunlight/seawater combination.

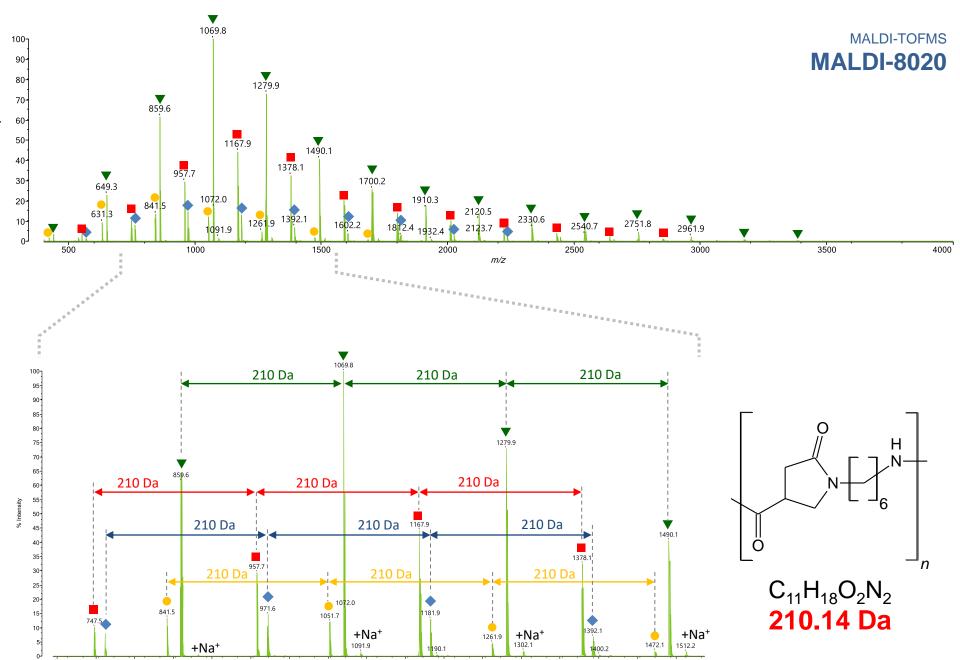
Immediately after immersion

After 14 days

2-2. Mass Spectrometry

The resulting sample in the seawater was diluted 10-fold by ultrapure water and measured using a CHCA matrix without any desalting pretreatment. Benchtop-type two instruments, MALDI-TOFMS (MALDI-8020, Shimadzu) and MALDI-DITMS (MALDIminiTM-1, Shimadzu) were used for the identification of the degradation products.

MALDI-TOFMS "MALDI-8020" Linear time-of-flight Rapid MS¹ measurement Polymer profiling

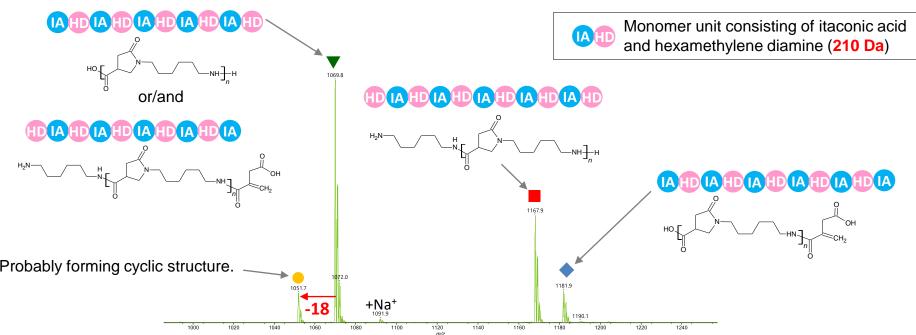


MALDI-DITMS **"MALDImini™-1" Digital ion trap MS¹⁻³** measurements Structural analysis

3. Results & discussion

3-1. MALDI-TOF MS of photodegradation products


The results of MALDI-TOFMS analyses of the degradative products of the bio-nylon in seawater showed four-types of polymers having monomer unit $\Delta m = 210 \text{ Da}$, which corresponds to a 1:1 condensation monomer of itaconic acid and hexamethylene diamine. Due to the presence of a basic constituent (hexamethylene diamine), all degradative polymers are ionized as [M+H]⁺, not as cationized forms in spite of the high level of salt constituents in seawater.


3-2. Estimated structures of the degradative products

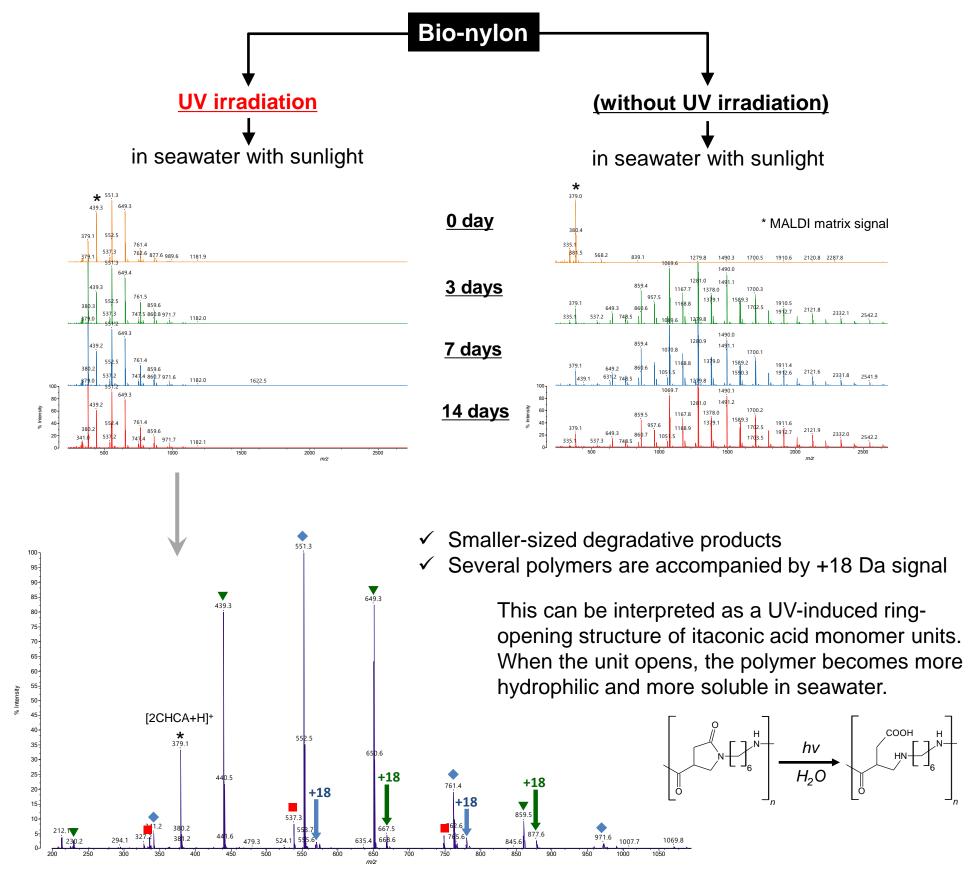
Considering the polymerization pathway and estimated cleavage sites during the photodegradation process, it was inferred that the four-types of polymers were the polymers with different terminal structures or a dehydrated product (probably forming cyclic structure).

We measured same samples by a different type of mass spectrometer, MALDI-DITMS (MALDImini-1). MALDImini-1 has the digital ion trap, enabling us to perform MS² and MS³ analyses under low-energy CID conditions. Each MS² mass spectrum of degradative products was obtained using MALDI-DITMS, and the results supported the structures estimated above.

473.4 443.3 491.4 502.3 512.3 512.8 503.3 519.3 3 491.3 500.8 607.3 515.3 522.3 503.4 518.4 13.2 491.4 504.3 514.3 522.4 473.2 491.2 501.2 513.2 513.2 513.2 522.3 513.2 522.2 513.2 522.2 513.2 522.2 513.2 522.2 522.3 522.2 522.3 522.2 522.3 522.2 523.3 523.2 523.3 523.2 523.3 524.2 525.3 525.2 525.3 525.2 525.3 525.2 55

3-3. MS² of the degradative products

MS² spectra were somewhat complicated, but can be interpreted as bellow. Detected MS² fragments can be classified into two groups, internal fragments and terminal fragments Cyclic - should mainly produce the internal fragments. Here, we focus on the terminal fragments. ◆-specific and ■-specific fragments can be interpreted as the terminal fragments (star-symbols) MS^2 of $\mathbf{\nabla}$ contains characteristic terminal fragments detected in MS^2 of $\mathbf{4}$ and $\mathbf{\Box}$ This indicates that $\mathbf{\nabla}$ is the mixture of \mathbf{W} -start and \mathbf{W} -start polymers, $(\mathbf{W}_{\mathbf{W}})_{n}$ and $(\mathbf{W}_{\mathbf{W}})_{n}$.

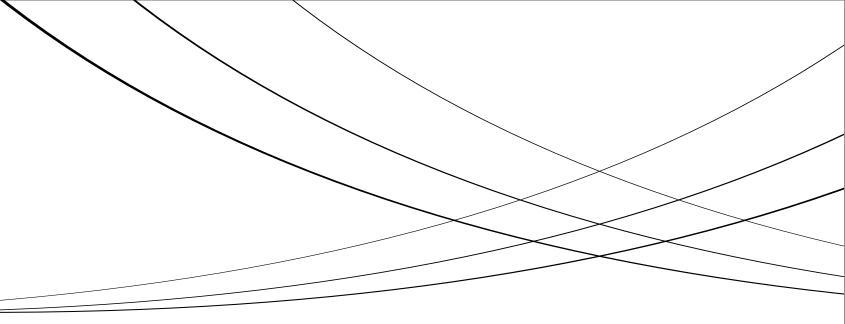

957@300_523 IAMSTEC_1.MS2_859@300_522 IAMSTEC_1_MS2_641@300_526 001-7.8037mV_0.0000-9.7260mV	→	Internal	Terminal fragments	Estimated fragment structures
532.3 632.3 533.4 633.3 530.4537.4 551.4 563.4 601.4 613.3 631.9 530.4537.4 551.4 563.4 602.4 613.3 631.9 532.4 602.4 613.3 631.9 6	661.3 662.4 45 653.4 677.4	~		★ 649
532.4 601.4 533.4 549.4 602.3 613.3 632.3 614.3 632.3 614.3 632.3 614.3 633.3 64 614.3 633.3 64 614.3 633.3 64 615.3 630.3 64	3.4 662.4 1.4 656.4 983.4	~		
601.4 532.4 533.4 549.4 602.4 603.4 613.4 613.4	649.4 649.4 649.5 660.5 660.5	~	Both of the above	★ 619
532.3 602.3 613.2 632.2 602.3 613.2 632.2 631.3 642 614.2 63.3 643 2 531.2 543.3 551.4 561.3 577.2 586.3 595.4 603.2 612.2 625.2 634.4		~	None	
all				

3-4. Degradation by UV light irradiation

ASMS 2021

FP-624

To accelerate degradation, UV irradiation was performed before sunlight/seawater degradation. Interestingly, the UV-irradiated bio-nylon before the sunlight/seawater degradation showed smaller-sized polymers compared to the non-irradiated bio-nylon. This may indicate that the degradation characteristics of this degradative bio-nylon depend on UV wavelength or irradiation intensity.



4. Conclusions

- > Polymer profiling by benchtop MALDI-TOFMS is useful for the evaluation of degradation characteristics of bioplastics
- > Elucidation of decomposed bio-nylon can be supported by MSⁿ measurements by MALDI-DITMS.
- Since polyamide-based polymers can be readily ionized as protonated form, the high level of salt contents in seawater does not prevent MALDI-MS analysis. This offers the wide application of MALDI-MS for analyzing degraded bioplastic polymers dissolved in seawater.

5. Acknowledgements

This research was performed by the Environment Research and Technology Development Fund (JPMEERF20201005) of the Environmental Restoration and Conservation Agency of Japan.

