© SHIMADZU

FP 505

Development of an analytical method for human blood triglycerides using triple quadrupole mass spectrometer
Yutaka Umakoshi; Toinon Doriane; Masaki Yamada
Shimadzu Corporation, Kyoto, Japan.

1. Overview

A method for the analysis of triglycerides in human blood was developed using liquid

2. Introduction

Triglycerides (TGs) are important energy storage molecules in animals. They play an mportant role in transporting energy in blood, but excess triglycerides are thought to promote atherosclerosis or other circulatory dideseases. Conventional blood tests estimate
p otal amount of triglycerides but do not provide quantitative information about the fatty the total amount of triglycerides but do no
acids bound to the various triglycerides. acids bound to the various triglycerides.
This research describes an CLMSMS MS method developed for the analysis of triglycerides in blood. The developed method enables topa analyzze the analy kinds of
triglycerides with different molecular weights in 11 minutes 1330 analysis day. Two triglycerides with different molecular weights in 11 minutes (130 analysis / day). Two
crommercially available human plasma and serum were analyzed, and the slight commercialy a avaiabie human plasma and serum were analyzed, and the sligh
differernces of triglyceride could be captured by principal component analysis (PCA).

3. Methods and Pretreatment

The Nexera" UHPLC system and LCMS'"-8060 (Shimadzu Corporation, Kyoto, Japan) were used to make measurements (Fig 1). LC and MS conditions are shown in Table 1 . Two human plasma samples (Plasma 1, 2) and human serum samples (Serum) were
purchased from Kohin Bio Co., Lto. These were pretreated as shown in Fig 2. Glyceryl purchased from Koohin Bio Co.. Ltd. These were pretreated as shown in fig 2. Glyceryl
trilinolenate (SIGMA-ALDRICH) was used as an internal standard. After extraction, each sample was analyzed three times.

. Analysis of triglycerides
Triglycerides have a structure in which three fatty acid molecules are esterified

fig. 3 Chemical Structure of a Triglyceride (TG 16:0/18:0/18:1)
For MRM of triglycerides, ammonium adduct ion was set as the precursor ion, and the
ion detected by eutral loss (NL) of fatty acids was set as the product in. For example, ion detected by neutral loss (NL) of fatty acids was set as the product ion. For example,
for the compound in Fig 3 , the MRM transition of 878.8×605.5 measures TG $16: 0$ _ $36: 1$, which is neutral loss of tatty acid $16: 0$ from $T G 52: 1.1$ The notation of triglycerides was decided according to Reference. Briefly, the fatty acids detected in triglycerides are
shown in front of the underscore, followed by the sum of the remaining two acyl residues In this method, fatty acids which have a carbon number from C14 to C 22 and a degree of unsaturation from 0 to 6 are considered. In addition to 195 MRM transitions targe
47 triglycerides in blood, an MRM transition of Glyceryl trilinolenate (TG 54:9) was epared as an internal standard.

5. Results

Representative MRM Chromatograms

An MRM chromatogram obtained by plasma analysis is shown in Fig 4 . TG $52: 2$ was
detected as the highest peak. TG $54: 9$ added as an internal standard eluted in: 2 min detected as the highest peak. TG $54: 9$ added as an internal standard eluted in 2.2 min, tended to elute faster as the number of double bonds increased.

Fig. 4196 MRM Chromatogram Obtained by Analyzing Triglycerides in Plasma (Overlaid)

> remoto
(1) TG 16:0_16:1_18:1
(2) TG $16: 016: 0_{1} 18: 2$
(1) TG 17:0_18:1_18:2
(2) TG 17:1_18:_18:1

The representative MRM chromatograms of TG $50: 2$, TG $53: 3$ and TG $54: 6$ are
hown in Fiq 5 . In TG $50: 2$, peaks were detected in the MRM: chromatogra to shown in Fig 5 . In TG $50: 2$, peaks were detected in the MRM hromatogram to
monitor neutral loss of fatty acids 16:0, 16:1, 18:1, and $18: 2$. As neutral lossderived peakras of satty acids $16: 0,0,16: 1$, and $18: 1$ were deteceted at the retention
dime 4.33 min, the fatty acid combination was estimated to be (1) TG

 As with $\bar{T} G 50: 2$, isomers of $T G 53: 3$ and $T G 54: 6$ were alse est are not conside As described above, 107 isomers with different fatty acid could be estimated Data analysis
e area values of the peaks in 195 MRM chromatograms were used for data he area values of the peaks in 195 MRM chromatograms were used for data
analysis. When the peak tops were divided into two or more peaks, multiple peak were processed in a batch, and the total area value was used for analysis.
Corrections were made by dividing each area value by the area value of the ternal standard.

Principal component analysis was performed on the two human plasma and one human serum samples. As a result, they were divided into three groups on the score
plot (Fig 7 , a). One-way ANOVA showed significant differences $(p<0.01)$ for 109 of the plot (Fig 7 , a). One-way ANOVA showed significant differences ($p<0.01$) for 100 of the
181 components. Some components that showed significant differences are highlighted in red on the loading plot ($(\mathrm{Fig} 7, \mathrm{~b})$.

1023
Fig. 8 Fatty Acids Constitutuing Triglycerides in Blood Samples
Area data of 21 fatty acids constitutuing triglycerides are displayed in a radar chart (Fig

6. Conclusion

A method for the analysis of triglycerides in human blood was developed. The method A mables 47 trigilycerides with different molecular weights to be analyzed in 11 minutes per cycle. Since this analysis method can detect the minute differences in blood
triglycerides with high throughput (130 analysis d day), it is expected to be useful for triglycerides with high through
disease biomarker discovery.

Reference

E, Aoki J, et al. Update on LIPID MAPS classification, nomenclatu and shorthand notation for MS-der
1555. doi:10.1194jir.S 120001025

