

Session F6

A Systematic Approach Towards UPLC[®] Method Development

Esa Lehtorinne

Esa_Lehtorinne@waters.com Tel: +358-9-5659 6288 Fax: +358-9-5659 6282

> Waters Finland Kutomotie 16 00380 Helsinki

Challenges of Method Development

- Waters THE SCIENCE OF WHAT'S POSSIBLE.**
- Chromatographic methods are developed for different applications constantly, like throughout the drug development process
 - Samples vary in complexity
 - Redundancy exists across an organization
- Method development is costly and time consuming
 - Desire to streamline processes to bring products to market faster
 - Faster chromatographic methods will improve profitability

Critical Components of Method Development

Outline

Introduction

- Approaches Toward Method Development
- UPLC Technology
- Success Criteria

Controlling Selectivity and Retention

- Stationary Phase and Particle Substrate Design
- Organic Modifier
- Mobile Phase pH

Method Development Strategy

- Systematic Screening Protocol
- Quality by Design [Q_bD] Approach

Implementing the Approach

Case Study

Conclusion

Outline

Introduction

- Approaches Toward Method Development
- UPLC Technology
- Success Criteria
- Controlling Selectivity and Retention
 - Stationary Phase and Particle Substrate Design
 - Organic Modifier
 - Mobile Phase pH
- Method Development Strategy
 - Systematic Screening Protocol
 - Quality by Design [Q_bD] Approach
- Implementing the Approach
 - Case Study
- Conclusion

Approaches Toward Method Development: Deriving Initial LC Conditions

- Match LC conditions to the chemical properties of the analyte[s]
 - Educated guess based on past experience [speculation]
 - Usually supplemented with a literature search
 - Ask a colleague
- Stepwise incremental approach
 - Next step experimental design based on results from previous experiment
- Systematic screening protocol
 - Evaluate combinations of mobile phase pH, organic modifier and stationary phase
 - Select best combination of these parameters
 - Method optimization
 - Gradient slope/Temperature

UPLC Technology Can Streamline Method Development

UPLC Technology enables faster method development

ACQUITY UPLC H-Class

Develop methods in a single work day!

- Systematic screening protocol involving pH, organic modifier and column chemistry
- High resolution sub 2 µm column technology creates high resolution separations, faster
- Automated column and mobile phase selection
- Quaternary solvent mixing [ACQUITY UPLC H-Class]

Before You Start: Information Gathering

- Chemical properties [functional groups]
 - Ionizable species, polarity, pKa, molecular weight
- Sample solubility
- Number of compounds present
 - How many components are you trying to separate?
- Sample matrix
- Detection technique [UV, ELS, RI, FL, MS etc.]
 - Based on available equipment or sensitivity requirements of assay
- Criteria for success
 - Concentration range and quantitative requirements
 - System suitability

Outline

Introduction

- Approaches Toward Method Development
- UPLC Technology
- Success Criteria

Controlling Selectivity and Retention

- Stationary Phase and Particle Substrate Design
- Organic Modifier
- Mobile Phase pH
- Method Development Strategy
 - Systematic Screening Protocol
 - Quality by Design [Q_bD] Approach
- Implementing the Approach
 - Case Study
- Conclusion

Chemical Factors that Impact Selectivity

• Waters THE SCIENCE OF WHAT'S POSSIBLE™

Improving Resolution with Complementary Selectivity

Impact on Resolution % Improvement

Double	Ν	20 - 40%
Double	k	15 – 20%
Double	α	> 400%

Stationary Phase Selectivity: Bonded-Phase [Ligand] and Particle Substrate

- Silanol activity and surface charge
 - Influences secondary interactions [ion-exchange], peak shape and sample loadability
- Hydrophobicity
 - Longer alkyl chain lengths will provide increased retention
 - Shorter, ionizable ligands will increase polarity
- Hydrolytic stability
 - Column lifetime will be impacted by the number of attachment points to the particle surface
- Ligand density
 - Influences retention and sample loadability

The Widest UPLC Column Offering

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Five particle substrates	В
 130Å, 200Å and 300Å BEH [Ethylene Bridged Hybrid], HSS [High Strength Silica] and CSH [Charged Surface Hybrid] 	в
 All are available in HPLC and UPLC particle sizes 	В
Wide and growing selection of column chemistries	B
 BEH 130Å C₁₈, C₈, Shield RP₁₈, Phenyl, HILIC and Amide 	
 BEH 300Å C₁₈ and C₄ 	В
• BEH 200Å SEC	В
 HSS C₁₈, T3, C₁₈ SB (and soon Cyano and PFP) 	
 CSH C₁₈, Fluoro-Phenyl and Phenyl-Hexyl 	Н
Proven application-based solutions	н
 AAA, OST, PST, PrST and Glycan 	
Transferability between HPLC and UPLC	Н
XBridge HPLC and ACQUITY UPLC BEH columns	-
HSS HPLC and ACQUITY UPLC HSS columns	C.
XSelect HPLC and ACQUITY CSH columns	C
VanGuard Pre-columns	0
eCord Technology	C

Industry Trends:

Current State of Reversed-Phase Separations

THE SCIENCE OF WHAT'S POSSIBLE.™

- Advances in stationary phase design
 - Hybrid particle technology
 - Extended usable pH range [1-12]
 - Exceptional peak shape and efficiency
 - Rugged and reliable column life
 - Sub 2 µm particle technology
 - Improvements in resolution, sensitivity and speed of analysis
 - Pellicular [core-shell] particles
- Instrument platform of choice
 - UltraPerformance LC with UV and mass spectrometry [UPLC/MS/[MS]]
 - Requires volatile mobile phases
 - Excludes typical UV-based buffers [i.e., phosphate buffers]
 - Preference towards low ionic strength additives
 - [i.e., formic acid, acetic acid, ammonium hydroxide]
 - Avoid preparation of buffers if possible

Defining the Problem: Low Ionic Strength Mobile Phases

- Poor mass loading of charged cationic [basic] solutes in low pH mobile phases due to limited sample capacity
 - High tailing factors
 - Poor signal intensity
- Slow equilibration at low pH
 - Drifting retention times with repeat injections
- Elution [retention] time shift after exposure to a higher pH mobile phase*1
 - Irreproducible assay performance when performing method screening
 - Low/high pH switching with un-buffered mobile phases

Explanation of CSH Technology

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

CSH Technology: Controlled Surface Charge Yields High Performance

VVOIEIS THE SCIENCE OF WHAT'S POSSIBLE.™

CSH Technology: Influence of Sample Loading on Trace Impurity Detection

THE SCIENCE OF WHAT'S POSSIBLE.™

CSH [Charged Surface Hybrid] Chemistries of UPLC Technology

CSH C₁₈

- Trifunctionally bonded C₁₈
- Wide pH range for maximum selectivity [pH 1 11]
- Superior peak shape and efficiency in buffered and low ionic strength mobile phases

CSH Phenyl-Hexyl

- Trifunctionally bonded C₆-Phenyl
- Wide pH range [1 11]
- Complementary selectivity for aromatic species

CSH Fluoro-Phenyl

- Trifunctionally bonded, non-endcapped, pentafluorophenyl [pH 1 – 8]
- Unique selectivity compared to alkyl columns
- Stable and reproducible manufacturing process

ACQUITY UPLC Column Selection: Systematic Screening

CSH C₁₈

- Wide pH range for maximum selectivity [pH 1 11]
- Superior peak shape and efficiency in buffered and low ionic strength mobile phases

CSH Phenyl-Hexyl

- Trifunctionally bonded C₆-Phenyl [pH 1 11]
- Complementary selectivity for aromatic species

CSH Fluoro-Phenyl

- Trifunctionally bonded pentafluorophenyl, non-endcapped
 [pH 1 8]
- Unique selectivity compared to alkyl columns

HSS C₁₈ SB [Selectivity for Bases]

- Low ligand density, trifunctionally bonded C_{18} [pH 2 8]
- Non-endcapped C₁₈ designed for silanophilic interactions and alternate selectivity with exceptional peak shape for bases

THE SCIE

Systematic Screening Protocol

■ Waters THE SCIENCE OF WHAT'S POSSIBLE.[™]

Chemical Factors that Impact Selectivity

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Demonstrating Selectivity: Chemical Structures

Waters

Stationary Phase Selectivity: Basic and Neutral Compounds

THE SCIENCE OF WHAT'S POSSIBLE."

Stationary Phase Selectivity: Acidic Compounds

Minutes

0.00

ers

THE SCIENCE OF WHAT'S POSSIBLE.™

Chemical Factors that Impact Selectivity

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Organic Solvent Properties

- Methanol
 - Protic solvent [hydrogen bond donor]
 - Weak elution solvent [compared to acetonitrile]
 - Higher viscosity than acetonitrile

- Acetonitrile
 - Aprotic solvent [hydrogen bond acceptor]
 - Strong elution solvent [compared to methanol]
 - Low viscosity

Solvent Selectivity: Basic and Neutral Compounds

THE SCIENCE OF WHAT'S POSSIBLE."

Solvent Selectivity: Acidic Compounds

Waters

©2011 Waters Corporation

Chemical Factors that Impact Selectivity

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Impact of Mobile Phase pH on Retention and Selectivity

- THE SCIENCE OF WHAT'S P
- Impacts analytes with ionizable functional groups
 - Amines
 - Carboxylic acids
 - Phenols
- Some compounds contain more than one ionizable group
- Strong selectivity changes can be observed with changes in mobile phase pH

Reversed-Phase Retention Map: The Impact of pH on Ionizable Compounds

VVOTERS THE SCIENCE OF WHAT'S POSSIBLE.™

Mobile Phase pH Selectivity: Basic and Neutral Compounds

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Mobile Phase pH Selectivity: Acidic and Neutral Compounds

■ Waters THE SCIENCE OF WHAT'S POSSIBLE.*

Implementing Mobile Phase pH Switching: Monitoring Column Performance

- Our systematic screening protocol evaluates high and low pH mobile phases.
 - Screen multiple columns and organic modifiers at pH 3 and pH 10
 - Stationary phase must be re-equilibrated when exposed to a new set of conditions
- With low ionic strength mobile phases [i.e., formic acid, ammonium hydroxide], column performance [retention and selectivity] can change *1
 - Slow surface equilibration at low pH
 - Inconsistent selectivity can impact open access systems and method transfer

Implementing Mobile Phase pH Switching: Monitoring Column Performance

THE SCIENCE OF WHAT'S POSSIBLE.™

Separations on Gemini-NX C18 (top) and XSelect CSH C18 (bottom) columns (both 2,1 x 50 mm) before and after exposure to a pH 10 mobile phase. Gradient: A: 0.1% formic acid in water; B: acetonitrile; 5 to 95% B linear in 2.5 minutes. Temperature: 30 °C. Injection volume: 2 µL. Detection: 260 nm. Flow rate: 0.8 ml/min. Analytes: (1) metoprolol; (2) amitriptyline; (3) dimethylphthalate; (4) diethylphthalate; (5) dipropylphthalate. System: ACQUITY UPLC. **Observations**

Gemini-NX C_{18} shows a 20 – 25 % change in retention at low pH, after exposure to high pH mobile phases.

No significant retention or selectivity shift was observed on the XSelect column.

Gemini is a trademark of Phenomenex, Inc.

Chemical Factors that Impact Selectivity

Waters THE SCIENCE OF WHAT'S POSSIBLE™

Maximizing Selectivity Differences: Combining Stationary Phase, Organic Modifier and Mobile Phase pH

THE SCIENCE OF WHAT'S POSSIBLE.™

©2011 Waters Corporation

Maximizing Selectivity Differences: Combining Stationary Phase, Organic Modifier and Mobile Phase pH

ACIDIC TEST PROBES

THE SCIENCE OF WHAT'S POSSIBLE.™

Selectivity Observations

- Analytes in their un-ionized [neutral] form yield greater retention
- Methanol is a weaker elution solvent than acetonitrile, and therefore exhibits increased retention of all components, as well as selectivity differences, compared to acetonitrile
- Large differences in selectivity are observed when a change in mobile phase pH alters the charge state of the analyte
- Large selectivity differences are observed between the stationary phases at any given condition
- The most significant selectivity differences occur when comparing combinations of stationary phase, organic modifier and mobile phase pH

Selectivity Summary

- Manipulation of parameters for method development [as described previously] is applicable to both HPLC and UPLC separations
 - Column selectivity [ACQUITY CSH or XSelect CSH HPLC columns]
 - Acetonitrile and methanol
 - pH 3 and pH 10 mobile phases
- Hybrid particle technology enables the exploration of pH extremes in method development
 - Stability from pH 1 11
- CSH Technology columns facilitate:
 - Selectivity differences independent of the mobile phase conditions employed
 - The use of low ionic strength mobile phases with high sample capacity
 - Reliable performance when switching between mobile phase pH's
- Evaluation of data from the complete systematic screening protocol is essential to fully understand the analytes chromatographic behavior

Why UPLC Technology for method development?

Develop Methods Faster with UPLC Technology: Maintaining Separation Power

Waters

Develop Methods Faster with UPLC Technology: Time Savings

THE SCIENCE OF WHAT'S POSSIBLE.™

	Column:	2,1 x 50	mm, 1,7	7/1,8μ	m
	Flow Rate	: 0,5 ml/r	nin		
	Gradient:	Time	Profi	le	
		[min]	%A	%B	%C
	_	0.0	90	5	5
		5.0	5	90	5
		5.1	90	5	5
		5.5	90	5	5
8	Dool	Canaci	+v [D]	- 15(1

Column:	4,6 x 10	0 mm, 3	,5 μm	
Flow Rate	: 1,17 ml/	min	2	
Gradient:	Time	Profi	le	
	[min]	%A	%В	%C
	0.0	90	5	5
	20.6	5	90	5
	21.0	90	5	5
	22.6	90	5	5

 $P_c = 1 + \frac{t_g}{w}$

UPLC can achieve the same separation 4X faster than 3.5 µm HPLC

Develop Methods Faster with UPLC Technology: Time Savings

Waters
THE SCIENCE OF WHAT'S POSSIBLE.™

UPLC Method Development Protocol:	
2.1 x 50 mm, 1.7/1.8 μm, 0.5 mL/min	
pH 3/ acetonitrile	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	11 min
Sample injection [2 replicates]	11 min
pH 3/ methanol	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	11 min
Sample injection [2 replicates]	11 min
Column purge	1 0 min
pH 10/ acetonitrile	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	11 min
Sample injection [2 replicates]	11 min
pH10/ methanol	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	11 min
Sample injection [2 replicates]	11 min
Column purge	<u> 10 min</u>
SCREENING TIME	1 20 min
2 hours/ column [low/high	pH switching]
	x 2 column
1 hour/ column [low pH on	ly]

x 2 column

TOTAL SCREENING TIME: 6 HOURS

4.6 x 100 mm, 3.5 μm, 1.17 mL/min	
pH 3/ acetonitrile	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	45.6 min
Sample injection [2 replicates]	45.6 min
pH 3/ methanol	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	45.6 min
Sample injection [2 replicates]	45.6 min
Column purge	41min
pH 10/ acetonitrile	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	45.6 min
Sample injection [2 replicates]	45.6 min
pH 10/ methanol	Time
Flow ramp	3 min
Column conditioning [2 blank gradients]	45.6 min
Sample injection [2 replicates]	45.6 min
<u>Column purge</u>	41 min
SCREENING TIME	459 min
7.65 hours/ column [low/high	pH switching]
	x 2 column
3.82 hour/ column [low pH onl	y]
	x 2 column

TOTAL SCREENING TIME: 23 HOURS

Develop methods 4X faster with UPLC

Outline

Introduction

- Approaches Toward Method Development
- UPLC Technology
- Success Criteria

Controlling Selectivity and Retention

- Stationary Phase and Particle Substrate Design
- Organic Modifier
- Mobile Phase pH

Method Development Strategy

- Systematic Screening Protocol
- Quality by Design [Q_bD] Approach
- Implementing the Approach
 - Case Study
- Conclusion

Automated Method Development

Waters THE SCIENCE OF WHAT'S POSSIBLE."

Systematic Screening Protocol

- ACQUITY UPLC H-Class Quaternary Solvent manager [QSM] with solvent select valve
 - Mix up to 4 solvents
 - Optional solvent select valve enables an additional 5 solvent lines
- ACQUITY UPLC H-Class Column Manager
 - Flexible modules to select between 2 and 6 columns
 - Utilize 2,1 x 50 mm, 1,7/1,8 μm columns
- Fast, 5 minute gradient from
 - 5 90 % organic at 0,5 ml/min

Systematic Screening Protocol

■ Waters THE SCIENCE OF WHAT'S POSSIBLE.**

Method Development: Quality by Design [Q_bD] Approach

- Systematic Screening Protocol
 - Good first pass, rapid method development
 - Choice of best combination of parameters [i.e., stationary phase, organic modifier, mobile phase pH] is subjective
 - Optimum separation conditions may be outside of screening approach [i.e., pH 5 with a mixture of acetonitrile and methanol]
- Quality by Design with Design of Experiments [DOE] Approach
 - Start with systematic screening protocol
 - Define separation objectives
 - Gain knowledge about the product or process
 - Create sufficient scientific understanding to establish a design space, specifications and controls
 - Defines robust operating space

Method Development: Quality by Design [Q_bD] Approach

Waters The science of what's possible."

Design of Experiments [DOE] Approach

- Fusion AE Method Development Software
 - Aligned with FDA and EMA Q_bD initiatives
 - Applies DOE approach to method development using simple templates
 - Facilitates data interpretation
 - Incorporates robustness modeling into the chromatographic development process
 - Automates sample and method set creation in Empower

Outline

Introduction

- Approaches Toward Method Development
- UPLC Technology
- Success Criteria

Controlling Selectivity and Retention

- Stationary Phase and Particle Substrate Design
- Organic Modifier
- Mobile Phase pH

Method Development Strategy

- Systematic Screening Protocol
- Quality by Design [Q_bD] Approach

Implementing the Approach

- Case Study
- Conclusion

Implementing the Approach: Mirtazapine and Impurities

V VOIELS

Mirtazapine [m.w. 265.35]

Used primarily for the treatment of clinical depression

USP mirtazapine resolution mix RS 1.0 mg/ml in 50:50 ACN: H_2O

Method development and optimization

- Empower 2 CDS with Fusion AE method development software
 - Uses statistically significant combination of different parameters [*software will not run every combination of every parameter*]
 - 4 column chemistries
 - 2 organic modifiers
 - o 2 mobile phase pH's
 - o Gradient times: 2, 3.1, 4.3, 5.4, 6.5 min

Fusion AE Experimental Design

THE SCIENCE OF WHAT'S POSSIBLE.™

CSH Phenyl-Hexyl

HSS C18 SB

Prs

Run No.	Gradient Time (min)	Organic Solvent Type (*)	рН (*)	Column Type (*)	1 3 1
Wash - 1	0.1	Acetonitrile	2.6	CSH HL C18	23
Wash - 2	0.1	Acetonitrile	2.6	CSH Phenyl-Hexyl	20
Wash - 3	0.1	Acetonitrile	2.6	CSH Fluoro-Phenyl	
Wash - 4	0.1	Acetonitrile	2.6	HSS C18 SB	
1.a.1.a	4.3	Acetonitrite	0.0		20.a.1.a
2.a.1.a	4.3	Acr			_
3.a.1.a	4.3	A	Fusi	on AE soft	ware aut
4.a.1.a	4.3	Α			
5.a.1.a	5.4	Α	cons	tructs a se	et of expe
6.a.1.a	6.5	A 61	alacti	ing the mo	st officie
7.a.1.a	2	A			
8.a.1.a	2	Α		experim	iental de
9.a.1.a	6.5	Α			
10.a.1.a	6.5	Α			
11.a.1.a	2		otru	mont moth	ode mo
12.a.1.a	4.3	A	istiui	nent meti	ious, me
13.a.1.a	4.3	A Sa	ample	e sets are a	automati
14.a.1.a	4.3	A			
15.a.1.a	4.3	A	IN	Empower	2 to carr
Wash - 5	0.1	Ad		•	orimont
Wash - 6	0.1	Acet		exp	periment
16.a.1.a	2	Acetonitrile	10.6	CSH Phenyl-Hexyl	35.a.1.a
17.a.1.a	4.3	Acetonitrile	10.6	CSH HL C18	36.a.1.a
18.a.1.a	6.5	Acetonitrile	10.6	CSH Phenyl-Hexyl	37 a 1 a
19.a.1.a	6.5	Acetonitrile	10.6	CSH Phenyl-Hexyl	38 a 1 a
Wash - 7	0.1	Methanol	2.6	CSH HL C18	Wash - 13
Wash - 8	0.1	Methanol	2.6	CSH Phenyl-Hexyl	Wash 14
Wash - 9	0.1	Methanol	2.6	CSH Fluoro-Phenyl	Wash 15
Wash - 10	0.1	Methanol	2.6	HSS C18 SB	West 10
					vvasn - 16

Replicates buil	t into design:
1.a.1.a, 12.a.1.a;	2.a.1.a, 13.a.1.a
3.a.1.a, 14.a.1.a;	4.a.1.a, 15.a.1.a
18.a.1.a, 19.a.1.a;	22.a.1.a, 30a.1.a
23.a.1.a, 28.a.1.a;	24.a.1.a, 32.a.1.a
26.a.1.a, 33.a.1.a;	34.a.1.a, 37.a.1.a

2.6

Methanol

Methanol

Methanol

Methanol

Methanol

Methanol

Methanol

Methanol

Methanol

Fusion AE software automatically
constructs a set of experiments by
selecting the most efficient statistical
experimental design

3.1

2

2

6.5

5.4

0.1

0.1

0.1

0.1

method sets a natically creat carry out the ent

	CSH Fluoro-Phenyl
	CSH Phenyl-Hexyl
Y I	HSS C18 SB
	CSH Phenyl-Hexyl
al nd ed	CSH HL C18
al nd ed	CSH HL C18
	CSH Phenyl-Hexyl
	CSH Fluoro-Phenyl
nd ed	CSH Fluoro-Phenyl
inu	CSH Fluoro-Phenyl
nd ed	HSS C18 SB
	CSH HL C18
nd ed	CSH HL C18
	CSH Phenyl-Hexyl
.0	CSH HL C18
10.6	CSH Phenyl-Hexyl
10.6	CSH HL C18
10.6	CSH HL C18
10.6	CSH Phenyl-Hexyl
10.6	CSH HL C18
10.6	CSH Phenyl-Hexyl
2.6	CSH Fluoro-Phenyl
2.6	HSS C18 SB

Stationary Phase Selectivity: Mirtazapine and Impurities

Waters The science of what's possible.™

Mobile Phase pH Selectivity: Mirtazapine and Impurities

V VUICIS THE SCIENCE OF WHAT'S POSSIBLE.™

Stationary Phase Selectivity, High pH

Solvent Selectivity, High pH: Mirtazapine and Impurities

Waters The science of what's possible.™

Data Analysis from Screening Protocol: Automated Method Optimizer

THE SCIENCE OF WHAT'S POSSIBLE.™

ariable Name	Units	Туре	Lower Bound	Upper						
ump Flow Rate	mL/min	Continuous	0.200		ptimize Responses - Response Varial	ole Goals				
ariable Name	Units	Туре	Lower Bound	Up	Response Name	Goal	Lower Bound	Upper Bound	Relative Rank	
Gradient Time	min	Continuous	2.00	F	No. of Peaks	Maximize 💌	5	11	1	I
ariable Name	Units	Туре	Lower Bound	Upi F	No. of Peaks >= 1.00 - USPResolution	Maximize 💌	2	10	1]
final % Organic	%	Continuous	60.00	۱ ۶	No. of Peaks >= 1.50 - USPResolution	Maximize 💌	2	9	1	I
ariable Name	Units	Туре	Lower Bound		No. of Peaks >= 2.00 - USPResolution	Maximize 💌	2	8	0.9 👻	1
en Temperature °C Continuous 30.0	ר ק	Max Peak #1 - USPTailing Max Peak #1 - Area	Minimize 💌	836,952,9395074	10,783,722.6259	0.6 💌]			
				F	No. of Peaks <= 1.50 - USPTailing	Maximize 💌	1	8	1]
					Last Peak - RetentionTime	Minimize 💌	1.569234511	7.081078898	0.9 💌]
tudy Variable Settings Valio settings are valid	lation Results			F	No. of Peaks <= 0.10 · WidthAt4_4Pct	Maximize 💌	3	10	1 👱]
				P	No. of Peaks <= 0.05 - WidthAt4_4Pct	Maximize 💌	0	9	·]
		Besto	re Defaults Kack	<u>.</u>	Confidence Limits for th Study Variable Settings Validation Results r settings are valid.	ne Predicted Response	s) ± 2 Sigma 💌	1		

Automized Method Optimization: Overlay Plot

THE SCIENCE OF WHAT'S POSSIBLE.™

White region represents operating region that meets specified success criteria

Optimized Results From Screening Protocol:

ACQUITY CSH C18 Acetonitrile, pH 10.6, $T_a = 5.13$ min

All 28 conditions included in the data analysis returned the same answer

Optimizer Answer #1: 28 of 28

Study Variable Data

Study Variable Name	Optimizer Answer Level Setting
Gradient Time	5.13
Organic Solvent Type	Acetonitrile
рН	10.600
Column Type	CSH HL C18

Optimization Parameters

VVOICIS THE SCIENCE OF WHAT'S POSSIBLE."

- Flow rate
 - Set window: 0,2 0,7 ml/min
- Gradient end point
 - Set window: 60 95 % acetonitrile
- Gradient time
 - Set window: 2 6,5 minutes
- Column temperature
 - Set window: 30 45 °C

Action:

Using column and mobile phase selections determined from screening protocol, Fusion AE determines an experimental design to optimize secondary effectors of selectivity

Determines interactions between variables including:

Linear additive effectsSimple interactionsComplex interactions

Method Optimization **Experimental Design**

AT'S POSSIBLE.™ THE SCIEN

45

45

45

45

45

60

60

60

60

78

65

6.5

2

2

4.3

6.5

6.5

4.3

43

		Pump Flow			Oven	28.a.1.a	1	0.7	6
	Sample Set	Rate	Gradient	Final %	Temperature	29.a.1.a	1	0.2	6
Run No.	No.	(mL/min)	Time (min)	Organic (%)	(°C)	30.a.1.a	st,	0.7	2
Wash - 1	1	0.45	0.1	95	30	31.a.1.a	1	0.2	2
1.a.1.a	1	0.7	6.5	95	30	32.a.1.a	81	0.45	4
2.a.1.a	1	0.2	6.5	95	30	33.a.1.a	1	0.7	6
3.a.1.a	1	0.7	2	95	30	34.a.1.a	1	0.2	6
4.a.1.a	1	0.2	2	95	30	35.a.1.a	1	0.2	4
5.a.1.a	1	0.7	6.5	60	30	36 - 1 -	3	0.45	4
6.a.1.a	1								
7.a.1.a	1	7	Euci		coftwo	ro auto	hmat	tically	
8.a.1.a	1	7	rusi		SUILWA	ie auto	JIIIa	lically	/
9.a.1.a	1		const	ructe	a set o	ferne	rime	nts h	
10.a.1.a	1				u set u				y _
11.a.1.a	×1.	Se	electi	na the	e most (efficier	nt st	atisti	cal
12 a 1 a	1								

experimental design

Instrument methods, method sets and sample sets are automatically created in Empower 2 to carry out the experim

23.a.1.a	9 1 ,	0.575	0.4	05	J7 .5
24.a.1.a	1	0.325	5.4	69	37.5
25.a.1.a	1	0.575	3.1	69	37.5
26.a.1.a	1	0.575	5.4	86	37.5
27.a.1.a	1	0.325	3.1	86	37.5

Sample set run time: < 14 hours **Replicates highlighted**

IIEIIL					000
				95	60
54.a.1.a	st.	0.7	2	78	60
55.a.1.a	1	0.7	2	95	60
56.a.1.a	1	0.2	2	78	60
57.a.1.a	1	0.2	2	95	60
58.a.1.a	1	0.45	6.5	60	60
59.a.1.a	1	0.45	4.3	78	60
60.a.1.a	1	0.7	4.3	60	60
61.a.1.a	4	0.7	6.5	60	60
62.a.1.a	1	0.2	4.3	60	60
Wash - 2	1	0.45	0.1	60	60

	95	45
	95	45
	78	45
	78	45
1	95	45
1	95	45
-	86	52.5
	69	52.5
	86	52.5
	60	60
	60	60
	60	60
	60	60
	95	60
	95	60
-	78	60
	95	60
	95	60
	78	60
	95	60
	95	60
	78	60
1	95	60
1	78	60
1	95	60
	60	60
	78	60
	60	60
1	60	60

13.a.1.a

14 a 1 a

15 a 1 a

16 a 1 a

17 a 1 a

18 a 1 a

19.a.1.a

20.a.1.a

21.a.1.a

22 a 1 a

1

1

1

1

1

1

1

1

1

1

Automized Method Optimization: Overlay Plot

THE SCIENCE OF W

HAT'S POSSIBLE.™

Study Variable Data

Study Variable Name	Optimizer Answer Level Setting
Pump Flow Rate	0.700
Gradient Time	6.50
Final % Organic	77.98
Oven Temperature	45.0

Control space No. of Peaks: 8 No. of Peaks >= 2.00 - USPResolution: 7 90.00 No. of Peaks <= 1.50 - USPTailing; 6 inal % Organic (%) 80.00 No. of Peaks >= 4.00 - USPResolution: 5 70.00 No. of Peaks >= 3.00 - USPResolution: 6 No. of Peaks <= 2.00 - USPTailing: 6 No. of Peaks <= 0.10 - WidthAt4 4Pct: 6 No. of Peaks <= 0.10 - WidthAt4_4Pct: 6 60.00 2.00 3.00 4.00 5.00 6.00

Gradient Time (min)

©2011 Waters Corporation

Final Optimized Result: Mirtazapine and Impurities

THE SCIENCE OF WHAT'S POSSIBLE.™

Outline

Introduction

- Approaches Toward Method Development
- UPLC Technology
- Success Criteria

Controlling Selectivity and Retention

- Stationary Phase and Particle Substrate Design
- Organic Modifier
- Mobile Phase pH

Method Development Strategy

- Systematic Screening Protocol
- Quality by Design $[Q_bD]$ Approach
- Implementing the Approach
 - Case Study

Conclusion

S POSSTRI E

Concluding Remarks

- UPLC Technology facilitates rapid development of robust methods
 - Systematic screening protocol involving pH, organic modifier and column chemistry
 - High resolution sub 2 µm column technology creates high resolution separations, faster
 - Automated column and mobile phase selection
 - Quaternary solvent mixing [ACQUITY UPLC H-Class]
- The principles of method development described here can implemented for both HPLC and UPLC
 - XSelect HPLC columns and ACQUITY CSH UPLC columns provide a broad range of selectivity [C18, Phenyl-Hexyl and Fluoro-Phenyl] to efficiently develop robust methods
- Combining Fusion AE method development software with UPLC Technology enables a rapid yet comprehensive approach to Q_bD method development
 - Develop robust methods in a matter of days
 - Incorporates robustness modeling into the method development process
 - Aligned with FDA and EMA Q_bD initiatives

Waters The science of what's possible."

