What Else Is In My Dioxin Sample? High Performance Time-Of-Flight Mass Spectral Analysis Of Environmental Samples

Introduction

Polychlorinated dibenzo-p-dioxins and furans are some of the most toxic materials known to man. They are relatively inert, fat soluble halogenated organic compounds that bioaccumulate in the environment. These persistent organic and fly ash samples containing both PCDDs and PCDFs, pollutants (POPs) have been linked to adverse cancer, reproductive and endocrine effects. In addition to dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), environmental samples may contain polyaromatic hydrocarbons (PAHs), halogenated PAHs, or numerous other industrial products and undiscovered hazardous compounds. These untargeted compounds may also be toxic and can be present in much higher concentrations than the target dioxins.

Persistent Organic Pollutants

High resolution TOFMS can be used for the comprehensive analysis of complex environmental samples. The advantages of high performance TOFMS for POP analysis are rapid acquisition of spectral data across a wide mass range with a minimum reduction in sensitivity, high resolving power to minimize interferences and high mass accuracy for robust elemental composition determinations. While other MS systems rely on selected ion monitoring to achieve the necessary detection limits for environmental studies, high resolution TOFMS can provide sensitivity while acquiring full mass range spectra allowing for identification of not only targeted compounds, but newly emerging environmental contaminante

EPA in Taiwan.

•GC: Agilent Column ✤Inj. Tem Injection Oven:

*Carrier

*Source **♦**EI: ✤Mass R

Representative Standard Data: CS5 Mass Spectra (OCDD, OCDF):

High Performance TOF MS (left) and its Folded Flight Path Mass Analyzer (Right)

Slava Artaev¹, <u>Eric J. Reiner²</u>, Peter Gorst-Allman³, Joe Binkley¹, and David E Alonso¹ 1. LECO Corporation, USA 2. University of Toronto 3. LECO Africa

Experimental

Standards and Samples:

Calibration standards (CS1 – CS5) were purchased from Wellington Laboratories (Guelph, Canada). Sediment as well as several classes of POPs were obtained from the

Instrument Parameters:

7890	
n Type:	Restek R <i>xi</i> -5 (30 m, 0.25 mm ID, 0.25 μm <i>d</i> f)
np.:	250°C
n:	Splitless, 2 μL
	120°C (1)→220°C(20°C/min)→240°C(2.0°C/min)→
	250°C (1.0°C/min)→260°C(5.0°C/min)→265°C(1.0°C/min)
Gas:	He, 1.0 mL/min constant flow

•MS: Pegasus GC-HRT

Temp.:	250 ∘C
	40 eV
lange:	160 - 510 m/z, High Resolution Mode

<u>Relative Abundance Values (OCDD, OCDF)</u>

Relative Abundance

0.245

0.275

0.036

0.023

Data CS3 Standard

Mass Accuracy Values: Native PCDF/Ds

Name	Formula	Calculated M+	Observed M+	Mass Accuracy (ppm)
TCDF N	C12H4OCl4	303.90108	303.90123	0.51
TCDD N	C12H4O2Cl4	319.89599	319.89556	-1.36
PCDF N	C12H3OCI5	337.86211	337.86202	-0.26
PCDF N	C12H3OCI5	337.86211	337.86183	-0.81
PCDD N	C12H3O2Cl5	353.85702	353.85716	0.41
HxCDF N	C12H2OCl6	371.82313	371.82306	-0.20
HxCDF N	C12H2OCl6	371.82313	371.82354	1.09
HxCDF N	C12H2OCl6	371.82313	371.82302	-0.30
HxCDD N	C12H2O2Cl6	387.81805	387.81810	0.14
HxCDD N	C12H2O2Cl6	387.81805	387.81817	0.32
HxCDD N	C12H2O2Cl6	387.81805	387.81830	0.65
HxCDF N	C12H2OCl6	371.82313	371.82348	0.94
HpCDF N	C12HOCI7	405.78416	405.78394	-0.55
HpCDD N	C12HO2Cl7	421.77908	421.77908	0.00
HpCDF N	C12HOCI7	405.78416	405.78421	0.13
OCDD N	C12O2Cl8	455.74010	455.74044	0.74
OCDF N	C12OCI8	439.74519	439.74450	-1.56

Ave. = 0.57 ppm

Mass Accuracy Values: Labeled PCDF/Ds

Labeled Compound	Calc M+	Obs M+	Mass Accuracy ppm	 Calc M+2	Obs M+2	Mass Accuracy ppm
TCDF L	315.94134	315.94136	0.08	317.93839	317.93851	0.39
TCDD L	331.93625	331.93650	0.76	333.93330	333.93331	0.03
Labeled Compound	Calc M+2	Obs M+2	Mass Accuracy ppm	Calc M+4	Obs M+4	Mass Accuracy ppm
PCDF L	351.89941	351.89951	0.28	353.89646	353.89646	-0.01
PCDF L	351.89941	351.89943	0.05	353.89646	353.89653	0.19
PCDD L	367.89433	367.89474	1.12	369.89138	369.89154	0.44
HxCDF L	385.86044	385.86054	0.26	387.85749	387.85761	0.31
HxCDF L	385.86044	385.86034	-0.26	387.85749	387.85787	0.98
HxCDF L	385.86044	385.86057	0.34	387.85749	387.85732	-0.44
HxCDD L	401.85535	401.85543	0.19	403.85240	403.85215	-0.63
HxCDD L	401.85535	401.85558	0.56	403.85240	403.85259	0.46
HxCDD L	401.85535	401.85555	0.49	403.85240	403.85252	0.29
HxCDF L	385.86044	385.86034	-0.26	387.85749	387.85754	0.13
HpCDF L	419.82147	419.82138	-0.21	421.81852	421.81864	0.29
HpCDD L	435.81638	435.81667	0.66	437.81343	437.81322	-0.49
HpCDF L	419.82147	419.82162	0.36	421.81852	421.81878	0.62
OCDD L	469.77741	469.77746	0.11	471.77446	471.77413	-0.70

Ave. = 0.39 ppm

Calibration Results:

Results: Fly Ash TIC and XIC for sample:

Target Analyte Finding -- 76 Dioxins:

ak #	Name	R.T. (s)	Quant S/N	Area	Height
1	TCDF N	607.5	231	45522	4629
2	TCDF N	617	148	27060	2969
3	TCDF N	626	70	9492	1397
4	TCDF N	636	1702	599207	34033
5	TCDD N	643	85	11796	1700
6	TCDD N	650.5	98	15172	1955
7	TCDF N	655	341	94019	6811
8	TCDF N	671	1193	503575	23865
9	TCDF N	683.5	419	87513	8375
10	TCDD N	684.5	245	93572	4901
11	TCDD N	700.5	71	15029	1425
12	2378-TCDF N	701	866	144124	8660
14	TCDD L	711	585	152418	11695
15	TCDF N	714	1325	335836	26508
16	TCDD N	720.5	146	58007	2916
18	TCDD N	738	67	16718	1349
19	TCDD N	757.5	25	7665	506
20	TCDF N	761.5	100	30673	1993
21	PCDF N	820	2894	1493648	57882
22	PCDD N	824	681	204802	13618
23	PCDD N	844.5	64	17905	1278
24	PCDF N	846	1062	326860	21248
25	PCDF N	856	54	5874	1076
27	12378-PCDF N	864.5	672	67004	6725
28	PCDD N	867	324	69690	6483
29	PCDF N	876.5	924	267925	18476
30	PCDD N	879.5	305	79188	6097
31	PCDD N	891.5	147	34660	2942
32	PCDD N	908.5	176	48501	3529
33	23478-PCDF N:2	909	2043	440715	20429

What else is in my sample?

Mass Spectra: PAHs

ue - sample"H10060178", Benzo[ghi]fluoranthene, at 768.	.093 s						Peak True - sample"H10060178", Benz[a]anthracene, 7-methyl-, at 964.715 s	
Peak True Match = 926/1000					226.07744 581-90 00 227 581-90 00 227 581-90 00 227 581-90 00 227 581-90 00 227 581-90 00 227 581-90 00 20 581-90 00 581-90 00 581-90		Peak True Match = 896/1000	
0 M/Z 170 iit - Library: mainlib - Benzo[ghi]fluoranthene	180	190	200	210	220 230	240 250	O +	
NIST					226,00000 00000 1272,00000 1272,00000 1272,100000 1272,100000		1000 - NIST 800 400	
0 M/Z 170	180	190	200	210	220 230	240 250	0 1 180 200 220	
e - sample"H10060178", Triphenylene, at 834.626 s					200.00015	$\widehat{\mathbf{O}}$	Peak True - sample'H10060178'', Benzo(k)fluoranthene, at 1220.71 s	
 Peak True Match = 951/1000)						Peak True Match = 948/1000	
M/Z 170 it - Library: replib - Triphenylene	180	190	200	210	220 230	240 250	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NIST					228.00000 000000000000000000000000000000		1000 800 400 200 200 1	
M/Z 170	180	190	200	210	220 230	240 250		

Current Work

Current work focuses on the use of a pulsed electron ionization source for sensitivity enhancement, and improving chromatographic resolution by using longer, thin film columns (e.g., Rtx-Dioxin-2, 40m x 0.18 mm x **0.18** μm).

Chromatographic Resolution: CS3WT Verification <u>Standard</u>

<u>XIC sediment sample – 110 Dioxins:</u>

Conclusion

High performance TOFMS provides a comprehensive profile of samples in a single acquisition. Its high resolving power and excellent mass accuracy values make it a practical choice for the analysis of complex environmental samples.

