Demystifying the Chromatographic Process

Agilent Technologies, Inc. Feb19, 2014

Bill Champion 800-227-9770, opt 3, opt 3, opt 2 *Ic-column-support@agilent.com*

Objectives of Talk

- Chromatography is a physical process
- Much can be described with simple equations
- Understanding the process simplifies Method development, Troubleshooting, Predicting behavior, etc.

Topics

- Chromatographic Process
- What Affects Resolution, R_s
- What Affects Retention, t_R
- What Affects Pressure, P
- Mis-use, Over-interpretation of Chromatographic Equations

Conclusions of Talk

Effect of Increasing	Ν	α	k	tR	Р
Flow	Van Deemter	No	No	Decrease	Increase
% B	Slight	Varies	Exp Dec	Exp Dec	Varies
Temperature (T)	Increase	Varies	Decrease	Decrease	Decrease
Particle Size (d _p)	Decrease	No	No	No	Decrease
Col Length (L)	Increase	No	No	Increase	Increase
Col Diameter(d)	Slight	No	No	No*	No*

* At constant linear velocity

Chromatographic Process

- Partition between mobile phase and stationary phase
- Description of the separation:

Chromatographic Process

- Partition between mobile phase and stationary phase ($K = C_s/C_m$)
- Description of the separation:
 - R_s Resolution
 - N Column Efficiency, Plates
 - k, k' Retention Factor, Capacity Factor
 - α Selectivity

Topics

- Chromatographic Process
- What Affects Resolution, Rs
- What Affects Retention, t_R
- What Affects Pressure, P

Definition of Resolution

$$\mathbf{R}_{\mathbf{s}} = \frac{\Delta \mathbf{t}_{\mathsf{R}}}{\overline{\mathbf{w}}}$$

Resolution is a measure of the ability to separate two components

Agilent Technologies

Definition of Resolution

$$\mathbf{R}_{s} = \frac{\mathbf{t}_{R-2} - \mathbf{t}_{R-1}}{(\mathbf{w}_{2} + \mathbf{w}_{1})/2} = \frac{\Delta \mathbf{t}_{R}}{\overline{\mathbf{w}}}$$

Resolution is a measure of the ability to separate two components

Resolution ...

Determined by 3 Key Parameters – Efficiency, Selectivity and Retention

The Fundamental Resolution Equation

$$\mathbf{R}_{s} = \frac{\sqrt{N}}{4} \frac{(\alpha - 1)}{\alpha} \frac{\mathbf{k}}{(\mathbf{k} + 1)} = \frac{\Delta t_{R}}{\overline{w}}$$

N = Column Efficiency – Column length and particle size

 α = **Selectivity** – Mobile phase and stationary phase

k = Retention Factor – Mobile phase strength

Resolution ...

Determined by 3 Key Parameters – Efficiency, Selectivity and Retention

The Fundamental Resolution Equation

$$\mathbf{R}_{s} = \frac{\sqrt{N}}{4} \frac{(\alpha - 1)}{\alpha} \frac{\mathbf{k}_{2}}{(\mathbf{\bar{k}} + 1)} = \frac{\Delta t_{R}}{\overline{w}}$$

N = Column Efficiency – Column length and particle size

 α = **Selectivity** – Mobile phase and stationary phase

k = Retention Factor – Mobile phase strength cf, Foley, *Analyst*, **116**, 1275 (1991)

Resolution ...

Determined by 3 Key Parameters – Efficiency, Selectivity and Retention

The Fundamental Resolution Equation

$$\mathbf{R}_{s} = \frac{\sqrt{N}}{4} \frac{(\alpha - 1)}{1} \frac{\mathbf{k}_{1}}{(\mathbf{k} + 1)} = \frac{\Delta t_{R}}{\overline{w}}$$

N = Column Efficiency – Column length and particle size

 α = **Selectivity** – Mobile phase and stationary phase

k = Retention Factor – Mobile phase strength cf, Foley, *Analyst*, **116**, 1275 (1991)

Factors that Improve Resolution

Chromatographic Profile Equations Describing Factors Controlling R_s

Retention Factor

$$k = \frac{(t_{R} - t_{0})}{t_{0}}$$

$$\alpha = k_2/k_1$$

Theoretical Plates-Efficiency $N = 16(t_R / t_W)^2$

Agilent Restricted

Feb 19, 2014

Some Basic Chromatography Parameters

- Resolution (R_S)
- Retention Factor (k), Capacity Factor (k')
- Selectivity or Separation Factor (α)
- Column Efficiency as Theoretical Plates (N)

Chromatographic separation is an Equilibrium Process

Sample partitions between Stationary Phase and Mobile Phase:

 $K = C_s / C_m$

Compound moves through the column only while in mobile phase.

Separation occurs in <u>Column</u> <u>Volumes</u>. (Flow is volume/time – mL/min)

 $K = C_1 / C_2$ $K \propto t_1 / t_2$

$$K = C_s / C_m = > = > k = \frac{t_s}{t_M}$$
 $k = \frac{t_R - t_0}{t_0}$

k is measure of number of column volumes required to elute compound (proportion of time in stationary phase).

Fundamental, dimensionless parameter that describes the retention (independent of flow rate, column length).

$$K = C_s / C_m \Longrightarrow k = \frac{t_s}{t_M} \quad t_R = t_M + t_s$$

k is measure of number of column volumes required to elute compound (proportion of time in stationary phase).

Fundamental, dimensionless parameter that describes the retention (independent of flow rate, column length).

$$K = C_s / C_m \Longrightarrow k = \frac{t_s}{t_M} \quad t_R - t_M = t_s$$

k is measure of number of column volumes required to elute compound (proportion of time in stationary phase).

Fundamental, dimensionless parameter that describes the retention (independent of flow rate, column length).

$$K = C_s / C_m \Longrightarrow k = \frac{t_s}{t_M} \quad t_R - t_0 = t_s$$

k is measure of number of column volumes required to elute compound (proportion of time in stationary phase).

Fundamental, dimensionless parameter that describes the retention (independent of flow rate, column length).

$$K = C_s / C_m = > = > k = \frac{t_s}{t_M}$$
 $k = \frac{t_R - t_0}{t_0}$

k is measure of number of column volumes required to elute compound (proportion of time in stationary phase).

Fundamental, dimensionless parameter that describes the retention (independent of flow rate, column length).

$$k = \frac{(V_{R} - V_{0})}{V_{0}} = \frac{(t_{R} - t_{0})}{t_{0}}$$

Measure of number of column volumes required to elute compound – fraction of time spent in SP (C_s)

Un-retained component – elutes w/ solvent front, $C_s = 0$

$$\underline{\mathbf{C}_{s}} = \mathbf{0} \Longrightarrow \mathbf{k} = \mathbf{0}$$

Un-retained component – elutes w/ solvent front $\frac{\mathbf{k} = (1 - 1) / 1 = 0}{\mathbf{k} = \mathbf{0}}$

Component retained – elutes in 1 add'l column volumes $\mathbf{k} = (2 - 1) / 1 = 1$

Component retained – elutes in 2 add'l column volumes $\frac{\mathbf{k} = (3 - 1) / 1 = 2}{\mathbf{k} = 2}$

Component retained – elutes in 7 add'l column volumes $\underline{\mathbf{k} = (8 - 1) / 1 = 7}$

Component retained – elutes in 7 add'l column volumes $\underline{\mathbf{k} = (8 - 1) / 1 = 7}$

Factors that Improve Resolution

Chromatographic Profile Equations Describing Factors Controlling R_s

Retention Factor

$$\boldsymbol{k} = \frac{(t_R - t_0)}{t_0}$$

<u>Selectivity</u>

$$\alpha = k_2/k_1$$

<u>Theoretical Plates-Efficiency</u> $N = 16(t_R / t_W)^2$

Some Basic Chromatography Parameters

- Resolution (R_S)
- Retention Factor (k), Capacity Factor (k')
- Selectivity or Separation Factor (α)
- Column Efficiency as Theoretical Plates (N)

$$\alpha = \frac{k_2}{k_1}$$

α is measure relative difference in retention

$$\alpha = \frac{k_2}{k_1}$$

α is measure relative difference in retention

$$k_1 = t_{s1}/t_m$$
$$k_2 = t_{s2}/t_m$$

$$\alpha = \frac{k_2}{k_1}$$

α is measure relative difference in retention

$$k_1 = t_{s1}/t_m$$
$$k_2 = t_{s2}/t_m$$

$$\alpha = \frac{t_{s2}}{t_{s1}}$$

$$\alpha = \frac{k_2}{k_1}$$

 α is measure of relative difference in retention

By definition, k_2 is more retained component; k_1 is less retained component, so α is always ≥ 1

To obtain separation, α must be > 1

Factors that Improve Resolution

Chromatographic Profile Equations Describing Factors Controlling R_S

Retention Factor

$$k = \frac{(t_R - t_0)}{t_0}$$

$$\frac{Selectivity}{\alpha = k_2/k_1}$$

<u>Theoretical Plates-Efficiency</u> $N = 16(t_R / t_W)^2$

Selectivity

- Mobile Phase
- Stationary Phase

- Mobile Phase
- Stationary Phase

Different Mobile Phases May Give Different Selectivity

ZORBAX® SB-C18 4.6 x 250 mm 1 mL/min, 40°C, 225 nm

Selectivity

- Mobile Phase
- Stationary Phase

Different Stationary Phases May Give Significantly Different Selectivity

Similar Stationary Phases May Give **Different Selectivity**

Eclipse Plus C18

Mobile phase: (69:31) ACN: water Flow 1.5 mL/min. Temp: 30 °C **Detector: Single Quad ESI** positive mode scan Columns: RRHT 4.6 x 50 mm 1.8 um

Sample:

1. anandamide (AEA)

2. Palmitoylethanolamide (PEA)

3. 2-arachinoylglycerol (2-AG)

4. Oleoylethanolamide (OEA)

Multiple bonded phases for most effective method development. Match to one you're currently using.

Selectivity

- "Chromatography is an Experimental Science"
- α not as predictable as k, N but more powerful

Some Basic Chromatography Parameters

- Resolution (R_s)
- Retention Factor (k), Capacity Factor (k')
- Selectivity or Separation Factor (α)
- Column Efficiency as Theoretical Plates (N)

N - Number of theoretical plates.

"Plates" is a term inherited from distillation theory. It is a measure of the relative peak broadening (or peak width) for an analyte in a separation -w

$$N = 16 \left[\frac{t_R}{W} \right]^2$$

A Number of Theoretical Plates

N - Number of theoretical plates.

We can increase N by increasing the length of the column or decreasing the size of the stationary phase particles. (1.8 μ m > 2.7 μ m > 3.5 μ m > 5 μ m > 10 μ m)

$$N = 16 \left[\frac{t_R}{W} \right]^2 = f(L, 1/d_p)$$
$$L = column length$$
$$d_p = particle size$$

N - Number of theoretical plates.

We can increase N by increasing the length of the column or decreasing the size of the stationary phase particles. (1.8 μ m > 2.7 μ m > 3.5 μ m > 5 μ m > 10 μ m)

 $N \sim \frac{L}{d_n}$

L = column length $d_p = particle size$

N - Number of theoretical plates.

We can increase N by increasing the length of the column or decreasing the size of the stationary phase particles. (1.8 μ m > 2.7 μ m > 3.5 μ m > 5 μ m > 10 μ m)

$N \approx 5,000 \, \mathrm{x} \frac{\mathrm{L}}{\mathrm{d}_{\mathrm{p}}}$

L = column length (mm) $d_n = particle size (µm)$

cf: Snyder, Kirkland, Dolan, Introduction to Modern Liquid Chromatography, 3rd Ed, Wiley (2010), p244

Test Chromatogram

LC Column Performance Report

SERIAL NUMBER:

 PART NUMBER:
 959963-902

 COLUMN TYPE:
 ZORBAX Eclipse Plus C18
 4.6 x 150 mm, 3.5 µm

 PACKING LOT #:

TEST CONDITIONS

MOBILE PHASE	=	85% Methanol / 15% Water
COLUMN PRESSURE	=	126.4 Bar
COLUMN FLOW	=	1.00 ml / min
LINEAR VELOCITY	=	0.168 cm / sec
TEMPERATURE	=	AMBIENT (Nominally 23 °C)
INJECTION VOLUME	=	5 µl

QUALITY CONTROL PERFORMANCE RESULTS FOR TOLUENE

********	*****	***********	******
I	EST VALUES	SPECIFICATIONS	
THEORETICAL PLATES =	25116	MIN = 18000	

THEORETICAL PLATES =	25110	WIIN = 10000
SELECTIVITY =	1.65	RANGE = 1.61 - 1.71
USP TAILING FACTOR = (@ 5% Peak Height)	1.07	RANGE = 0.98 - 1.20

k' = 0.93

Peak	Conc	Sample
#	(ug/ml)	Component
1	5	Uracil
2	200	Phenol
3	25	4-Chloro Nitrobenzene
4	850	Toluene

N - Number of theoretical plates.

We can increase N by increasing the length of the column or decreasing the size of the stationary phase particles. (1.8 μ m > 2.7 μ m > 3.5 μ m > 5 μ m > 10 μ m)

 $N \sim \frac{L}{d_n}$

L = column length $d_p = particle size$

Column Efficiency (N) – Effect of Particle Size

N - Number of theoretical plates.

We can increase N by increasing the length of the column or decreasing the size of the stationary phase particles. (1.8 μ m > 2.7 μ m > 3.5 μ m > 5 μ m > 10 μ m)

L = column length $d_p = particle size$

Van Deemter Curve Factors Affecting N

Linear Velocity *u*

The smaller the plate height, the higher the plate number and the greater the chromatographic resolution

Agilent Technologies

Putting it Together The van Deemter Equation

The smaller the plate height, the higher the plate number and the greater the chromatographic resolution

Van Deemter Curve Effect of Particle Size

Smaller particle sizes yield fatter curves, minima shift to higher flow rates

Columns Packed with Smaller Particles Provide Higher Efficiency

Decreasing Particle Size

Chromatographic Profile Equations Describing Factors Controlling R_S

Chromatographic Profile Equations Describing Factors Controlling R_s

Feb 19, 2014

Chromatographic Profile Equations Describing Factors Controlling R_s

Some Basic Chromatography Parameters

- Resolution (R_S)
- Retention Factor (k), Capacity Factor (k')
- Selectivity or Separation Factor (α)
- Column Efficiency as Theoretical Plates (N)

Factors that Affect Resolution

Resolution as a Function of Selectivity, Column Efficiency, or Retention

Page 65

Topics

- What Affects Resolution, R_s
- What Affects Retention, t_R
- What Affects Pressure, P

Retention

- Mobile Phase Strength
- Temperature

Effect of Mobile Strength on Retention

%ACN	tR-1	tR-2	k(1)	k(2)	ln(k1)	ln(k2)	Sel (a)
60	1.11	1.26	0.33	0.52	-1.10	-0.66	1.58
55	1.29	1.51	0.56	0.81	-0.59	-0.21	1.45
50	1.58	1.90	0.91	1.28	-0.10	0.25	1.41
45	2.05	2.53	1.47	2.05	0.39	0.72	1.39
40	2.68	3.66	2.47	3.41	0.90	1.23	1.38

 $k = \frac{(t_R - t_0)}{t_0}$

%ACN	tR-1	tR-2	k(1)	k(2)	ln(k1)	ln(k2)	Sel (a)
60	1.11	1.26	0.33	0.52	-1.10	-0.66	1.58
55	1.29	1.51	0.56	0.81	-0.59	-0.21	1.45
50	1.58	1.90	0.91	1.28	-0.10	0.25	1.41
45	2.05	2.53	1.47	2.05	0.39	0.72	1.39
40	2.68	3.66	2.47	3.41	0.90	1.23	1.38

Effect of %B on k

%ACN	tR-1	tR-2	k(1)	k(2)	ln(k1)	ln(k2)	Sel (a)
60	1.11	1.26	0.33	0.52	-1.10	-0.66	1.58
55	1.29	1.51	0.56	0.81	-0.59	-0.21	1.45
50	1.58	1.90	0.91	1.28	-0.10	0.25	1.41
45	2.05	2.53	1.47	2.05	0.39	0.72	1.39
40	2.68	3.66	2.47	3.41	0.90	1.23	1.38

Effect of %B on k

%ACN	tR-1	tR-2	k(1)	k(2)	ln(k1)	ln(k2)	Sel (a)
60	1.11	1.26	0.33	0.52	-1.10	-0.66	1.58
55	1.29	1.51	0.56	0.81	-0.59	-0.21	1.45
50	1.58	1.90	0.91	1.28	-0.10	0.25	1.41
45	2.05	2.53	1.47	2.05	0.39	0.72	1.39
40	2.68	3.66	2.47	3.41	0.90	1.23	1.38

Effect of %B on k

Mobile Strength

%ACN	tR-1	tR-2	k(1)	k(2)	ln(k1)	ln(k2)	Sel (a)
60	1.11	1.26	0.33	0.52	-1.10	-0.66	1.58
55	1.29	1.51	0.56	0.81	-0.59	-0.21	1.45
50	1.58	1.90	0.91	1.28	-0.10	0.25	1.41
45	2.05	2.53	1.47	2.05	0.39	0.72	1.39
40	2.68	3.66	2.47	3.41	0.90	1.23	1.38

Effect of %B on In(k) 2.50 2.00 $\ln(k) = \ln(k_{\rm W}) - S(\%{\rm B})$ 1.50 1.00 ln(k) 0.50 0.00 -____ln(k1) -0.50 -1.00 In(k2) -1.50 50 40 45 55 60 35 65 % ACN

Mobile Strength

%ACN	tR-1	tR-2	k(1)	k(2)	ln(k1)	ln(k2)	Sel (a)
60	1.11	1.26	0.33	0.52	-1.10	-0.66	1.58
55	1.29	1.51	0.56	0.81	-0.59	-0.21	1.45
50	1.58	1.90	0.91	1.28	-0.10	0.25	1.41
45	2.05	2.53	1.47	2.05	0.39	0.72	1.39
40	2.68	3.66	2.47	3.41	0.90	1.23	1.38

Effect of %B on In(k) 2.50 2.00 1.50 1.00 ln(k) 0.50 $y^2 = -0.0942x + 4.976$ $R^2 = 0.9994$ 0.00 -____ln(k1) -0.50 y1 = -0.0996x + 4.88-1.00 In(k2) $R^2 = 0.9999$ -1.50 40 45 50 55 60 35 65 % ACN

Mobile Strength

%ACN	tR-1	tR-2	k(1)	k(2)	ln(k1)	ln(k2)	Sel (a)
60	1.11	1.26	0.33	0.52	-1.10	-0.66	1.58
55	1.29	1.51	0.56	0.81	-0.59	-0.21	1.45
50	1.58	1.90	0.91	1.28	-0.10	0.25	1.41
45	2.05	2.53	1.47	2.05	0.39	0.72	1.39
40	2.68	3.66	2.47	3.41	0.90	1.23	1.38

Effect of %B on In(k) 2.50 2.00 a, selectivity 1.50 1.00 ln(k) 0.50 $y^2 = -0.0942x + 4.976$ $R^2 = 0.9994$ 0.00 -0.50 In(k₂) In(k2) y1 = -0.0996x + 4.88-1.00 🔺 ln(k₁) $R^2 = 0.9999$ ล -1.50 40 45 50 55 60 35 65 % ACN

Change in Order of Elution

Effect of % ACN on Ret'n

Agriciite reciniturugies

.

Page 78

Agilent Restricted Feb 19, 2014

Effect of Temperature

- Reduces Analysis Time
- May Change Selectivity

Topics

- What Affects Resolution, R_s
- What Affects Retention, t_R
- What Affects Pressure, P

What About Pressure? Pressure Increases with Decreasing Particle Size

Equation For Pressure Drop Across an HPLC Column

$$\Delta P = \frac{\eta \cdot \boldsymbol{L} \cdot v}{\theta \cdot d_{p}^{2}}$$

- ΔP = Pressure Drop
- η = Fluid Viscosity
- L = Column Length
- v = Flow Velocity
- **d**_p = Particle Diameter
- θ = Dimensionless Structural Constant of Order 600 For Packed Beds in LC

 ✓ Many parameters influence column pressure
✓ Particle size and column length are most critical
✓ Long length and smaller particle size mean more resolution and pressure
✓ We can now handle the pressure

Comparison of Effect of Water/ACN and Water/MeOH on Viscosity

cf: Neue, HPLC Column - Theory, Technology, and Practice, Wiley (1997)

Topics

- What Affects Resolution, R_s
- What Affects Retention, t_R
- What Affects Pressure, P

"UHPLC" vs HPLC

Effect of Increasing	Ν	α	k	tR	Р
Flow	Van Deemter	No	No	Decrease	Increase
% B	Slight	Varies	Exp Dec	Exp Dec	Varies
Temperature (T)	Increase	Varies	Decrease	Decrease	Decrease
Particle Size (d _p)	Decrease	No	No	No	Decrease
Col Length (L)	Increase	No	No	Increase	Increase
Col Diameter(d)	Slight	No	No	No*	No*

* At constant linear velocity

Pressure does not cause improved separation.

Pressure is the result of the conditions that cause improved separation.

Thank you – Questions?

Bill Champion 800-227-9770, opt 3, opt 3, opt 2 *Ic-column-support@agilent.com*

