

### Amplify Your Findings with fully integrated CE/MS

Agilent 7100 Capillary Electrophoresis System

Dr. Martin Greiner Product Manager

Low Flow CE & LC Solutions January, 28, 2013





### **Overview**



- Why Capillary Electrophoresis complements HPLC
- Setup of Agilent CE/MS system
- News and updates on Agilent CE/MS
  - New Agilent JetStream compatible ESI-sprayer
  - Access to iFunnel MS
  - New integration of CE into Agilent MassHunter software
- Application examples CE/MS





## **Principles of Capillary Electrophoresis**

For charged substances like ions, small basic or acidic drugs and typical biomolecules, CE is an ideal tool for analysis

- · Separation based on compound mobility (mass/charge) in an electrical field
- High resolution separations (often > 100,000 plates)
- Fast separation (few minutes)
- Smallest sample volumes (nL Injections)
- Less sample prep required (no stationary phase, just an open glass tube)
- Orthogonal technique complementing HPLC
- Low consumption of sample and aqueous buffer (green method)







ECHNOL

## **Comparison of Techniques**

 $v = \mu_e E$ where v = ion velocity  $\mu_e$  = electrophoretic mobility E = applied electric field



#### HPLC

#### Electrophoresis

| <ul> <li>Separation principle</li> <li>Adsorption / desorption between a stationary and a liquid mobile phase</li> <li>Advantage: Chromatography as wide spread method, many publications</li> <li>Disadvantage: Expensive solvents and columns (cost of ownership)</li> </ul>                                                            | <ul> <li>Separation principle</li> <li>Compound specific mobility in an electrical field depending on charge state, m/z, size and shape of the molecule</li> <li>► Advantage: High resolution, e.g. isomers can be separated effectively</li> <li>► Disadvantage: Solvent and compound chemistry must be aligned</li> </ul>                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Typical samples( for reversed phase RP-HPLC )Neutral or slight polar compounds, small to medium size rangeAdvantage:Fast UHPLC gradients, good reproducibilityDisadvantage:lons / polar compounds often unresolved, intact proteins difficult                                                                                             | Typical sampleslons or charged compounds, from inorganic ions to large polymers► Advantage:widest range of molecules, physiological conditions► Disadvantage:neutral compounds require often MS-incompatible additives                                                                                                                       |
| <ul> <li>Detection</li> <li>Various detectors ranging from UV, Fluorescence, Light scattering,<br/>Conductivity or a whole suite of MS instruments and methods</li> <li>Advantage: Choice of principle to use, covering a wide range in sensitivity</li> <li>Disadvantage: Not generally compatible with each method/technique</li> </ul> | Detection         Main technique is UV-DAD with medium sensitivity but broad application range. More sensitiv are LIF and Mass Spectrometry         ► Advantage:       UV very simple to use for ppm range. MS down to ppt range         ► Disadvantage:       Small sample volumes limits choice of detectors                               |
| <ul> <li>Flow rate</li> <li>Pump driven constant flow in typically µL/min - ml/min range</li> <li>Advantage: Stable flow, identical speed of compounds at detection point</li> <li>Disadvantage: High solvent consumption, technology needs maintenance</li> </ul>                                                                        | <ul> <li>Flow rate</li> <li>pH dependent: capillary flow rate plus compound specific migration</li> <li>Typical flow rates are in the range of x0 - x00 nL/min</li> <li>&gt; Advantage: Ideal for sensitive low-flow Electrospray-MS</li> <li>&gt; Disadvantage: Flow rates change with chemistry (buffer capacity, wall effects)</li> </ul> |



## **Comparison of Techniques**

Orthogonal



#### HPLC

#### Electrophoresis

| <ul> <li>Separation Columns</li> <li>packed with adsorption material, typically RP-modified particles</li> <li>Advantage: many different phases, easy switch, analytical and preparative</li> <li>Disadvantage: risk to damage packing by solvents or by matrix adsorption</li> </ul>                                       | Separation Columns         None, open tube fused silica capillaries usually 25 -100 μm ID         ► Advantage:       Low cost, low volumes of buffers (mL) reduced sample prep         ► Disadvantage:       Capillary coating might be required, non-preparative technique                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Injections<br>µL-volumes (typically 1-100) liquid aliquots loaded onto the column<br>▷ Advantage: increased sensitivity through high loading capacity<br>▷ Disadvantage: requires large sample volumes                                                                                                                      | Injections<br>nL-Aliquots loaded by pressure, alternative: electrokinetic injection<br>► Advantage: Stacking procedures (ITP) to concentrate compounds<br>► Disadvantage: reduced loading capacity > reduced sensitivity                                                                                        |
| <ul> <li>UV-Detection</li> <li>Light path length is an important parameter for UV-sensitivity, in HPLC typical values are 10-60 mm in UV flow cells</li> <li>Advantage: High UV sensitivity through a large light path</li> <li>Disadvantage: Extra detection cell required, balance on volumes &amp; flow rates</li> </ul> | <ul> <li>UV-Detection</li> <li>Light path is directly through the capillary without a flow cell, this reduces path length to the ID (25-100 µm)</li> <li>Advantage: Agilent bubble-cell increases ID without a loss in resolution</li> <li>Disadvantage: reduced light-path &gt; reduced sensitivity</li> </ul> |
| Familiarity with technique                                                                                                                                                                                                                                                                                                  | HPLC CE                                                                                                                                                                                                                                                                                                         |

| Familiarity with technique      |  |          |
|---------------------------------|--|----------|
| Analyte neutral - polar         |  | <b>O</b> |
| Range of detectors              |  | <u> </u> |
| Sensitivity                     |  | <u> </u> |
| Reproducibility (qual/quant)    |  |          |
| Capital cost instruments        |  | Ð        |
| Sample prep effort              |  | ۲<br>۲   |
| Resolution performance          |  | er       |
| Sample volume required          |  | Ita      |
| Analyte size                    |  | ar       |
| Cost of ownership               |  | <b>×</b> |
| Biocompatibility (native Prot.) |  |          |
| Analyte polar - fully charged   |  |          |
| Charged polymers and Proteins   |  |          |



## Agilent 7100 CE System

| Performance | Highest sensitity for UV              |
|-------------|---------------------------------------|
| Handling    | Quick, direct and easy                |
| Automation  | Agilent replenishment system          |
| Flexibility | All modes, open to external detectors |
| CE/MS       | Complete single vendor solution       |
| Economic    | Reducing cost of ownership            |





## **Agilent CE/MS Setup OpenLAB CDS (ChemStation edition)**





Sprayer Kit (G1607B)

| Agilent CE/MS Advantages    |                                                                                      |
|-----------------------------|--------------------------------------------------------------------------------------|
| Single vendor solution:     | direct and competent support                                                         |
| Sheath Liquid Interface:    | <ul> <li>robust and reliable, offering efficient control<br/>on chemistry</li> </ul> |
| Capillary outlet on ground: | <ul> <li>no compromises on voltages for CE or ESI-<br/>MS</li> </ul>                 |

The Measure of Confidence



### **Agilent CE/MS Setup New: MassHunter Software Control**





| Agilent CE/MS Advantages    |                                                                                      |
|-----------------------------|--------------------------------------------------------------------------------------|
| Single vendor solution:     | direct and competent support                                                         |
| Sheath Liquid Interface:    | <ul> <li>robust and reliable, offering efficient control<br/>on chemistry</li> </ul> |
| Capillary outlet on ground: | <ul> <li>no compromises on voltages for CE or ESI-<br/>MS</li> </ul>                 |

OF,QTOF,QQQ



#### Agilent CE/MS Solutions Components

#### Agilent's complete CE/MS systems consists of

- Agilent Agilent 7100 CE instrument
- Agilent CE/MS adapter kit (G1603A)
- Agilent CE/MS sprayer Kit (G1607B)
- Agilent 6000 series MS instrument portfolio (Q, QQQ, TOF, Q-TOF)
- Agilent MS source (JetStream, Standard ESI, APCI, APPI)
- Agilent MassHunter software B.05.01 (or higher)
- Agilent HPLC pump with degasser (any 12xx-type)
- Agilent HPLC pump with degasser (any 12xx-type)

#### Other detectors can be run in parallel to the MS-detection:

- UV-DAD (included in 7100 CE)
- LIF (Laser induced Fluorescence e.g. Picometrics)
- CCD (contactles conductivity e.g. ISTech or eDAQ)



## Agilent interface for CE/MS Cassette type

- **Cassette without liquid cooling**, temperature control by fast airstream providing efficient cooling and heating using a Peltier element
- Quick change of capillaries, no sealings, no liquids no leaks.
- Access to 7100 built in UV-DAD providing UV monitoring (traces and full spectra)
- CCD Sensors can be placed inside the temperature controlled cassette for conductivity measurments







### Agilent interface for CE/MS Sheath-liquid type

- Sheath liquid is added to the CE eluent by a software controlled LC pump at a rate of typically 1 -5 µL/min.
- It often consists of a mix of water, methanol or isopropanol, adjusted for desired pH range (by volatile acids or bases)
- Besides controlling flow rate and chemical conditions for ESI ionization of molecules it allows grounding of the non-conductive fused silica capillary to the metal tube of the spray needle

#### **Advantages**

- High stability & reproducibility for routine analysis
- Decoupling chemistry (CE separation / MS ionization)
- Constant flow rates during runs and sequences
- No modification of capillary / columns required









#### New setup offers:

•

- Access to 6490 QQQ and 6550 QTOF iFunnel technology
- No need to purchase separate ESI source (G1948B) for CE/MS •
- Full backwards compatibility of G1607B sprayer to existing ESI sources •
- Very robust sprayer







## Agilent interface for CE/MS Agilent MassHunter software for LC-MS & CE/MS

**MassHunter versions B.05.01 and higher** are integrating and controlling Capillary Electrophoresis for CE/MS analysis as a single software package under Windows 7 (64 bit)





## Agilent 7100 CE/MS software options

| Software type           | OpenLAB CDS        | MassHunter                                    | ChemStation<br>(+MassHunter)                     |
|-------------------------|--------------------|-----------------------------------------------|--------------------------------------------------|
| Supported CE instrument | Agilent 7100 CE    | Agilent 7100 CE                               | old Agilent 1600 CE                              |
| Supported MS instrument | Agilent 61xx MSD   | Agilent TOF,QTOF,QQQ<br>Incl. iFunnel Systems | MSD only (ChemStation)<br>TOF,QTOF,QQQ (CS+MH)   |
| Workstation             | Single PC          | Single PC                                     | 1 PC co-excecution CS + MH<br>1 PC-CS + 1 PC- MH |
| SW Version              | C.01.03 and higher | B.05.01. and higher                           | Last CS: B.04.03<br>MH: B.04.xx                  |
| Additional requirements |                    |                                               | Macro (sequence > worklists)                     |





## **CE/MS Applications**

# INFINITELY BETTER TECHNOLOGIES

#### **CE/MS** analysis provides specific advantages

- Orthogonal separation method vs. chromatographic separations
- Very high resolution by combining CE and MS resolution
- Improved MS sensitivity vs. standard UV analysis
- Fast analysis especially with TOF/QTOF instrumentation
- CE separation with reduced sample preparation
- Non-denaturing separations of bio molecules (e.g. Proteins)

| Screening           |                                             | Target Analysis                                              |
|---------------------|---------------------------------------------|--------------------------------------------------------------|
| MS choice: TOF/QTOF |                                             | MS choice: MSD/QQQ                                           |
| •                   | Protei<br>Peptic<br>Metab<br>Small<br>Impur | n ID<br>le mapping<br>olomics<br>Molecule ID<br>ity analysis |





#### **Applications: Small anionic molecules** Metabolomics by CE-TOF/MS Instrument type: Agilent TOF

Journal: Analytical Chemistry

#### Metabolomic Profiling of Anionic Metabolites by Capillary Electrophoresis Mass Spectrometry

Tomoyoshi Soga,\*,† Kaori Igarashi,† Chiharu Ito,† Katsuo Mizobuchi,‡ Hans-Peter Zimmermann,§ and Masaru Tomita<sup>†</sup>

Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan, Agilent Technologies, 9-1 Takakura-cho, Hachioji, Tokyo 192-8510, Japan, and Agilent Technologies, Hewlett-Packard-Strasse 8,



The Measure of Confidence



#### Biopharmaceutical Analysis Peptide mapping Glycopeptides Instrument type: Agilent Q-TOF



#### MS raw data of BSA digest



BioConfirm Protein Analysis Peptide Matching Results (sequence coverage) and final Peptide map





| Compour   | idList |           |        |                 | _          |             |              |                           |   |           |
|-----------|--------|-----------|--------|-----------------|------------|-------------|--------------|---------------------------|---|-----------|
| Show/Hide | RT     | Mass      | Height | Sequence        | Seq Loc    | Seq Name    | Tgt Seq Mass | Pred Mods 🛛 🗸             | 1 |           |
|           | 14.92  | 2957.1244 | 707    | EEQYNSTYR       | A(301-309) | Heavy Chain | 2957.1443    | 1°G2F (NA2F)(+1768.6395)  | - | Minor for |
|           | 14.599 | 2795.0725 | 6223   | EEQYNSTYR       | A(301-309) | Heavy Chain | 2795.0914    | 1°G1F(+1606.5867)         |   | ]         |
| <b>V</b>  | 14.282 | 2633.0226 | 18992  | EEQYNSTYR       | A(301-309) | Heavy Chain | 2633.0386    | 1"GOF (NGA2F)(+1444.5339) | - | Major for |
|           | 3.544  | 1465.9302 | 184    | ALPAPIEKTISKAK  | A(335-348) | Heavy Chain | 1465.8968    |                           |   |           |
|           | 4.437  | 1266.7376 | 172    | ALPAPIEKTISK    | A(335-346) | Heavy Chain | 1266.7547    |                           |   |           |
|           | 5.275  | 1676.7697 | 177    | FNWYVDGVEVHNAK  | A(283-296) | Heavy Chain | 1676.7947    |                           |   |           |
|           | 5.904  | 1807.023  | 196    | WSVLTVLHQDWLNGK | A(310-325) | Heavy Chain | 1806.9992    |                           |   |           |
| <b>V</b>  | 8.811  | 1188.4915 | 300    | EEQYNSTYR       | A(301-309) | Heavy Chain | 1188.5047    |                           |   |           |



More details in Agilent Pub. No. 5990-7138EN

#### The Measure of Confidence



## **Quantification of Drugs of abuse**

#### Instrument type: Agilent QQQ



Combination of effective sample stacking method with a highly sensitive iFunnel QQQ instrument



INFINITELY BETTER TECHNOLOGIES

#### Cocaine







Data: Isabelle Kohler, University of Geneva, School of Pharmaceutical Sciences, Geneva, Switzerland





## Summary

INFINITELY BETTER TECHNOLOGIES

Agilent is the only sole vendor to provide a completely integrated robust and sensitive CE/MS solution for research and for routine analysis

- Full Agilent series 6000 MS portfolio available single quad, QQQ, TOF, and QTOF
- Triple-tube interface to optimize individually separation and MS ionization no compromises
- Range of ion sources available standard ESI and Agilent JetStream (APPI and APCI on demand)
- Flexibility on additional detectors UV-DAD, LIF, and CCD in parallel to MS
- iFunnel-Sensitivity for small molecules down to the ppt range
- Agilent MassHunter software control one software, one workstation
- Single-vendor solution integrated system and single-source support





## **More information**

INFINITELY BETTER TECHNOLOGIES

Integrated CE/MS for orthogonal analysis is one of a wave of innovative Agilent technologies for ensuring your analytical lab stays at the forefront of separation potential.

## www.agilent.com/chem/cems





