Thermo. Titr. Application Note No. H-009

Title: \quad Determination of Sulfate in Brines

Scope: \quad Determination of the sulfate content of brines

Principle:	An aliquot of brine is acidified with nitric acid and titrated with standard barium chloride solution to a single thermometric endpoint. In concentrated brines, the endpoint is subject to some rounding. For accurate results, it is necessary to determine the method blank on aliquots of a sample brine solution.

Reagents:	Standard $1 \mathrm{~mol}^{\prime} / \mathrm{L} \mathrm{BaCl}$
2	solution
	$5 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}$
	Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ A.R.

Method:	Basic Experimental Parameters:
	Data rate (per second) 10
	Titrant delivery rate (mL/min.) 2
	No. of endothermic endpoints 1
	Data smoothing factor 55
	Procedure:
	Pipette a 25.00 mL or 50 mL aliquot of brine into a titration vessel. Add $1 \mathrm{~mL} 5 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$, and titrate with $1 \mathrm{~mol} / \mathrm{L}$ BaCl_{2} solution to an exothermic endpoint.
	Determination of method blank:
	Titrate aliquots of $20,25,30,40$ and 50 mL of a selected typical brine sample according to Section 4.2. Subject the results to regression analysis, plotting aliquot volume on the x-axis and BaCl_{2} titre on the y-axis. The y-intercept is the method blank in mL , and must be subtracted from all titres. It will be noted in the example given here; the intercept is negative, meaning that this amount must be effectively added to the titre.
	Standardization of BaCl_{2} titrant:
	Dry anhydrous A.R. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 2 hours at $200^{\circ} \mathrm{C}$. Cool in a dessicator. Weigh accurately 5 amounts ranging from approximately 0.13 g to 0.65 g in roughly equal increments directly into titration vessels. Add 30 mL D.I. water and 1 $\mathrm{mL} 5 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$ and titrate. Convert masses of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ titrated to mmole, and plot on the x-axis, with

corresponding titres of BaCl_{2} on the y-axis. Perform a regression analysis, and compute the gradient of the regression curve. The molarity of the BaCl_{2} is the reciprocal of the gradient. In this instance, the y-intercept is not used as the method blank, due to the need to match the sample matrix.

Results (Example):	Analysis of brines:		
	Sample No.	Sample Aliquot, mL	Sulfate as $\mathbf{S O}_{4}{ }^{2-}, \mathbf{g} / \mathrm{L}$
	1	50	4.73.4.75 $\varphi=4.74$
	2	20-50	$\begin{aligned} & 12.16,12.13,12.17,12.14, \\ & 12.08 \varphi=12.14, \text { S.D. }= \\ & 0.033 \end{aligned}$
	3	50	2.80, $2.77 \varphi=2.79$
	4	25	7.70, $7.70 \varphi=7.70$
	5	25 \& 50	$3.10,3.14,3.11 \varphi=3.12$

Determination of Method Blank (Example based on sample \#2)		
(see Fig. 1)	Sample aliquot volume, mL	Titre $\mathrm{BaCl}_{2}, \mathrm{~mL}$
	20	2.533
	25	3.155
	30	3.792
	40	5.032
	50	6.330

Standardization of $\mathrm{BaCl}_{\mathbf{2}}$ Titrant			
(see Fig. 2)	Mass of $\mathbf{N a}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$ \mathbf{g}	\begin{tabular}{c}	
\end{tabular}Equiv. $\mathbf{~ m m o l e ~}$ $\mathbf{N a}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$	$\mathbf{B a C l}_{\mathbf{2}}$ titre, $\mathbf{m L}$		
	0.1320	0.925	1.012
	0.2690	1.884	1.971
	0.5444	3.813	3.909
	0.4119	2.885	2.986
	0.6662	4.667	4.751

* Assumes reagent purity of 99.5%

Fig.1. Regression analysis to determine method blank y-intercept $=$ method blank $=-0.0017 \mathrm{~mL}$

Fig. 2. Regression analysis to standardize BaCl_{2}
Molarity $=1 /$ gradient $=1 / 1.0004=0.9996 \mathrm{~mol} / \mathrm{L}$

Calculation:

$\mathrm{SO}_{4}^{2-} g / L=\frac{\left((\text { titre }, m L-\text { blank, } m L) \times \mathrm{M} \mathrm{BaCl}_{2} \times \mathrm{FW} \mathrm{SO}_{4}^{2-}\right)}{\text { sample volume, } \mathrm{mL}}$
Example:
$S O_{4}^{2-} g / L=\frac{((2.004-(-0.0017)) \times 0.9996 \times 96.058)}{25.00}$
$=7.70$

Thermometric Titration Plot:

