

Application Bulletin 181/5

Automated potentiometric titration of aluminum and magnesium in the same solution

Branch

General analytical laboratories; pharmaceutical industry; metals, electroplating

Keywords

Titration; automation; aluminum; magnesium; Cu ISE; complexometric titration; back-titration; DCTA; branch 1; branch 4; branch 10; 6.0502.140

Summary

Mixtures of aluminum and magnesium ions can be analyzed automatically by potentiometric titration. After addition of 1,2-diaminocyclohexanetetraacetic acid (DCTA) and complex formation the DCTA excess is back-titrated with copper(II) sulfate. The ion-selective copper electrode is used as indicator electrode. First the aluminum is determined in acidic solution, then the magnesium in alkaline solution.

Instruments

- Titrator with MET mode
- 10 mL buret, 2x
- Sample changer

Electrodes

Cu ISE	6.0502.140
LL ISE Reference	6.0750.100

Reagents

- Copper sulfate pentahydrate, CuSO₄ · 5 H₂O
- 1,2-Diaminocyclohexanetetraacetic acid monohydrate, DCTA
- Sodium acetate
- Glacial acetic acid
- Sulfuric acid, concentrated, H₂SO₄
- Ammonia, w(NH₃) = 10%
- Calcium standard, 6. 2303.070

- Cu(NH₄)₂EDTA, Cu-EDTA
- NaOH

Solutions

Titrant	c(CuSO ₄) = 0.1 mol/L If possible this solution should be bought from a supplier. Dissolve 24.968 g CuSO ₄ \cdot 5 H ₂ O in approx. 500 mL deion. H ₂ O, add 0.5 mL conc. H ₂ SO ₄ and make up to 1 L with deion. H ₂ O.
DCTA solution	c(DCTA) = 0.1 mol/L Dissolve 36.463 g DCTA in 400 mL c(NaOH) = 0.5 mol/L and make up to 1 L with deion. H ₂ O.
Buffer solution	Dissolve 123 g sodium acetate and 86 mL conc. acetic acid in deion. H ₂ O and make up to 1 L.
Cu-EDTA	$c(Cu(NH_4)_2EDTA) = 0.1 \text{ mol/L}$ If possible this solution should be bought from a supplier.
NaOH solution	c(NaOH) = 1 mol/L

Standard solution

Calciu	ım standard	$c(Ca^{2+}) = 0.1 \text{ mol/L}$
		6.2303.070

Sample preparation

No sample preparation is required.

Analysis

Titer DCTA

3 to 5 mL calcium standard is dosed into a titration vessel. 50 mL deion. H_2O and 10 mL $w(NH_3)$ = 10% and 1 mL Cu-EDTA are added. The solution is then titrated with c(DCTA) = 0.1 mol/L until after the first equivalence point.

Automated potentiometric titration of aluminum and magnesium in the same solution

Titer CuSO₄

3 to 5 mL c(DCTA) = 0.1 mol/L is dosed into a titration vessel. 50 mL deion. H_2O and 10 mL $w(NH_3)$ = 10% are added. The solution is then titrated with $c(CuSO_4)$ = 0.1 mol/L until after the first equivalence point.

Sample

Strongly acidic sample solutions (e.g. from acid digestions) are pre-neutralized to pH = $2 \dots 3$ with c(NaOH) = 1 mol/L.

Pipet a sample volume containing not more than 12 mg Al^{3+} and 20 mg Mg^{2+} into a titration vessel and dilute with 50 mL deion. H_2O . First the aluminum is determined. Add 6.00 mL c(DCTA) = 0.1 mol/L and 5 mL buffer solution and allow to react for 1 min under stirring. Afterwards the DCTA excess is back-titrated with $c(CuSO_4) = 0.1$ mol/L until after the first equivalence point.

Now the magnesium can be determined. Add another 6.00 mL c(DCTA) = 0.1 mol/L and $20 \text{ mL w(NH}_3) = 10\%$ to the titrated sample solution and back-titrate the DCTA excess with $c(CuSO_4) = 0.1 \text{ mol/L}$ until after the first equivalence point.

Parameters

Titer DCTA and CuSO₄

Mode	MET U
Stirring rate	8
Signal drift	50 mV/min
Min. waiting time	5 s
Max. waiting time	26 s
Volume increment	0.1 mL
EP criterion	30 mV
EP recognition	greatest

Al determination

Mode	MET U
Stirring rate	8
Signal drift	50 mV/min
Min. waiting time	5 s
Max. waiting time	26 s
Volume increment	0.1 mL
Stop EP	1
Volume after EP	1 mL
EP criterion	30 mV
EP recognition	greatest

Mg determination

-	
Mode	MET U
Stirring rate	8
Signal drift	50 mV/min
Min. waiting time	5 s
Max. waiting time	26 s
Volume increment	0.1 mL
EP criterion	15 mV
EP recognition	greatest

Calculation

Titer DCTA

$$f_1 = \frac{V_{Std} \times c_{Std}}{V_{EP1} \times c_{DCTA}}$$

f₁: Titer of DCTA

 $\begin{array}{lll} V_{\text{Std}} \colon & \text{Added volume of standard solution in mL} \\ c_{\text{Std}} \colon & \text{Concentration of the standard solution in mol/L} \\ V_{\text{EP1}} \colon & \text{Titrant consumption until the first equivalence} \end{array}$

point in mL

c_{DCTA}: Concentration of DCTA in mol/L

Titer CuSO₄

$$f_2 = \frac{V_{DCTA} \times f_1 \times c_{DCTA}}{V_{EP1} \times c_{CuSO_4}}$$

f₂: Titer of CuSO₄

V_{DCTA}: Added volume of DCTA in mL

f₁: Titer of DCTA

c_{DCTA}: Concentration of DCTA in mol/L

V_{EP1}: Titrant consumption until the first equivalence

point in mL

c_{CuSO₄}: Concentration of CuSO₄ in mol/L

Sample

$$\beta_{AI} = \frac{(V_{DCTA} \times f_1 \times c_{DCTA} - V_{EP1.1} \times f_2 \times c_{CuSO_4}) \times M_{AI}}{V_S}$$

$$V_{Ex} = V_{End} - V_{EP1.1}$$

$$\beta_{Mg} = \frac{(V_{DCTA} \times f_1 \times c_{DCTA} - (V_{EP1.2} + V_{Ex}) \times f_2 \times c_{CuSO_4}) \times M_{Mg}}{V_S}$$

 $\begin{array}{ll} \beta_{Al} : & \text{Aluminum content in g/L} \\ \beta_{Mg} : & \text{Magnesium content in g/L} \end{array}$

Application Bulletin 181/5 e

Automated potentiometric titration of aluminum and magnesium in the same solution

V_{DCTA}: Added volume of DCTA in mL

 $V_{\mbox{\footnotesize{EP1.1}}}$: Titrant consumption until the first equivalence

point of the aluminum titration in mL

V_{EP1.2}: Titrant consumption until the first equivalence

point of the magnesium titration in mL

V_{Ex}: Excess of titrant added in the aluminum titration

in mL

V_{End}: End volume of the aluminum titration in mL

 f_1 : Titer of DCTA f_2 : Titer of CuSO₄

 $\begin{array}{ll} c_{DCTA} \colon & Concentration \ of \ DCTA \ in \ mol/L \\ c_{CuSO_4} \colon & Concentration \ of \ CuSO_4 \ in \ mol/L \end{array}$

 M_{Al} : Molecular mass of aluminum; 26.982 g/mol M_{Mg} : Molecular mass of magnesium; 24.305 g/mol

V_S: Sample size in mL

Example determination

Fig. 1: Titration curve of the aluminum determination

Fig. 2: Titration curve of the magnesium determination

Comments

- The surface of the Cu ISE has to be polished from time to time with aluminum oxide powder (6.2802.000 polishing set).
- A waiting time of at least 1 min before the titration of the aluminum is recommended, due to the slow reaction of aluminum with DCTA.

Author

Competence Center Titration

Metrohm International Headquarters