

Hydrocarbons, $C_1 - C_2$ Analysis of carbon monoxide and carbon dioxide in hydrocarbon streams

Application Note

Energy & Fuels

Introduction

The Agilent CarboBOND column has a high retention for CO and CO_2 . The CO is separated from the air peak, but only if the air peak is not too big.

Separation between CO and oxygen (air) is sufficient (Chromatogram 2) to measure CO and CO_2 at low ppm levels by converting them to methane and detection with FID (Chromatogram 1). If there was coelution, response would be non-linear.

Therefore, this can only be done if the oxygen concentration is of the same order as CO. Here we were able to inject up to 100 μ L of ethylene, keeping the response on carbon monoxide reproducible. When using shorter columns, the sample size has to be much smaller to achieve the separation. A 0.53 mm x 50 m CarboBOND with a 10 μ m film will improve capacity, but will also require more time for higher boiling material to elute.

To elute any high boiling material, the CarboBOND column can be conditioned at 300 °C for quick bake-out. Due to the bonded layer, CarboBOND can be used with switching systems.

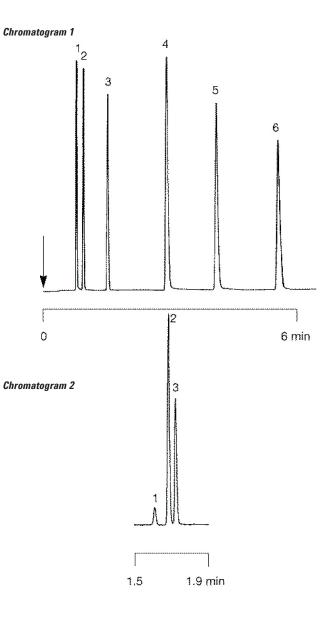
Authors

Agilent Technologies, Inc.

Conditions

Technique	GC-wide-bore	
Column	Agilent CarboBOND, 0.53 mm x 50 m fused si PLOT (df = 5 μ m) (Part no. CP7372)	lica
Temperature	35 °C (7 min) \rightarrow 180 °C, 30 °C/min	
Carrier Gas	H ₂ , 60 kPa (0.6 bar, 7.2 psi)	
Injector	Valve via split. 1:5, T = 30 °C	
Detector	Chromatogram 1:FID with a Ni-catalyst methanizer Chromatogram 2: TCD T = 250 °C	
Sample Size	100 µL	
Courtesy	Jim Luong and Lyndon Sieben, Dow Chemical Canada, Western Canada Operations	

Peak identification 1


Concentration range: 100 ppm in N_2

- 1. carbon monoxide
- 2. methane
- 3. carbon dioxide
- 4. acetylene
- 5. ethylene
- 6. ethane

Peak identification 2

Concentration range: equal concentrations

- 1 helium
- 2. air
- 3. carbon monoxide

www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2011 Printed in the USA 31 October, 2011 First published prior to 11 May, 2010 A01431

Agilent Technologies