

Amines, $\mathbf{C}_1 - \mathbf{C}_2$ Analysis of trace amines

Application Note

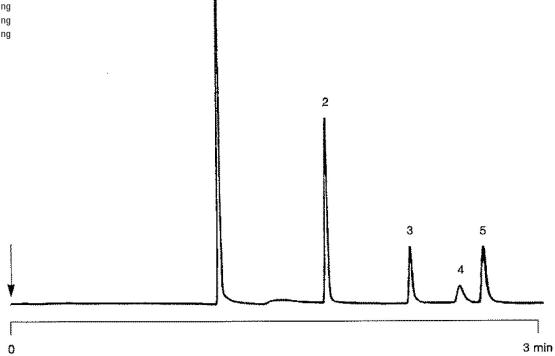
Environmental

Introduction

Amines are difficult to analyze due to their strong basic nature. Capillary columns must be base-modified to elute amines with acceptable recovery. For highly volatile amines, including ammonia, the siloxane-based phases do not provide enough retention. The Agilent PoraPLOT for Amines porous polymer provides a high retention combined with a high inertness for amines.

Volatile amines elute at low levels as shown in this application. Also ammonia elutes as a sharp peak at nanogram levels. If, besides these amines, alcohols and/ or water must be measured, a 5 μ m film Agilent CP-Sil 5 CB is recommended, operated at temperatures around 30 °C.

Authors


Agilent Technologies, Inc.

Conditions

Technique	: GC-capillary
Column	: Agilent PoraPLOT for Amines, 0.32 mm x 25 m, fused silica PLOT (df = 10 μm) (Part no. CP7591)
Temperature	: 140 °C (2 min) \rightarrow 250 °C, 10 °C/min
Carrier Gas	:H ₂ , 95 kPa (0.95 bar, 13 psi)
Injector	: on-column
Detector	: ELD
Sample Size	: 0.1 µL 1

Peak identification

1.	ammonia	1.8 ng
2.	methylamine	3.4 ng
3.	dimethylamine	2.9 ng
4.	trimethylamine	2.9 ng
5.	ethylamine	3.4 ng

www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2011 Printed in the USA 31 October, 2011 First published prior to 11 May, 2010 A01397

Agilent Technologies