

Alternative Methods to RSK 175
Using Purge and Trap Concentration
and Automated Headspace for the
Analysis of Dissolved Gases in
Drinking Water

Application Note

Abstract

With the growing price of oil, many alternative energy sources are being explored. Natural gas prices are actually decreasing, in large part to the use of hydraulic fracturing in areas like the Marcellus Shale in Pennsylvania. Due to increased concern over the hydraulic fracturing process and the release of methane and other chemicals into the local drinking water, a need has developed for fast and accurate analysis of methane in water. This study will evaluate methods developed for the determination of methane, ethane, ethene, and propane in water using a Purge and Trap concentrator and automated headspace analysis with GC/FID. Calibration curves, method detection limits (MDLs), and carryover data will be presented and comparisons between the methods will be made.

Introduction

Hydraulic fracturing, also known as "fracking", is a drilling process currently used to recover natural gas from sources like coalbeds and shale formations. This involves injecting large amounts of water, mixed with sand and chemicals at high pressures to break up the shale to release the gas. An outline of the hydraulic fracturing process can be found in Figure 1. Natural gas from these hard-to-extract sources is becoming increasingly popular and is projected to grow to nearly 45% of the nation's natural gas supplies by 2035³.

Sales/Support: 800-874-2004 · **Main:** 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040

Courtesy of Ohio Department of Natural Resources Division of Mineral Resources Management (Illustration modified by TOMWC)

Figure 1: Process of Hydraulic Fracturing to Drill for Natural Gas4

Even though hydraulic fracturing is a relatively old practice, first employed over 60 years ago to drill for oil in Oklahoma⁵, there has been little research into the impact of its increasing use as a drilling process for natural gas. With growing concern over the environmental effects of fracking on water quality, the United States EPA has begun studies to monitor the treatment methods and environmental impact with the goal of standardization by 2013/2014⁶. Figure 2 shows a map of shale gas formations in the North America indicating the potential widespread environmental impact the fracking process could have.

Sales/Support: 800-874-2004 · **Main:** 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040

The current method for determining natural gas constituents (methane, ethane, and ethene) in water is RSK 175¹. This method is employed for the analysis of dissolved gases in drinking water using a headspace equilibration technique. Propane has been added to this list in modified methods such as BOL6019², developed by the Pennsylvania Department of Environmental Protection (PADEP). This analysis also requires more modern automated headspace analyzers. A flame ionization detector (FID) will be employed for this study, although RSK 175¹ also allows thermal conductivity (TCD) as well as electron capture detectors (ECD) to be used. This application demonstrates alternative analyses, including purge and trap concentration and automated headspace, to create simple and efficient methods for analyzing dissolved gases.

Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI. Updated: May 9, 2011

Figure 2: Shale Gas Formations in North America⁷

For this study, a Stratum Purge and Trap Concentrator (PTC) was used in conjunction with an AQUATek 100 Autosampler. This set-up allows for complete automation of sample preparation for the analysis of liquid samples for purge and trap. A recirculating chiller bath was also utilized to maintain a sample temperature of less than 10° C. This technique also requires a 5 mL purge volume. Additionally, the HT3 and Versa Headspace analyzers, utilizing a loop sampling technique, used a 10 mL sample volume for this analysis.

Utilizing a GC/FID, a linear calibration was performed and percent Relative Standard Deviation (%RSD) and Method Detection Limits (MDLs) were determined for the full list of compounds. Similarly to BOL6019², calibrations were performed on aqueous standards rather than the gaseous standards used in RSK 175¹. Percent carryover was also evaluated for the purge and trap method.

Experimental-Instrument Conditions

The Stratum PTC and AQUATek 100 Autosampler as well as the HT3 and Versa Headspace analyzers were coupled to a GC/FID for analysis. Teledyne Tekmar's new proprietary trap (P/N: 15-0885-403) was also utilized for the purge and trap method. The GC was configured with a Restek Rt-U-BOND 15 m x 0.53 mm x 20 µm column. The GC/FID parameters are outlined in Tables 1 and 2. Table 3 outlines the P&T and autosampler conditions. A recirculating chiller bath was also employed to maintain sample temperatures below 10° C. Table 4 outlines the conditions for the headspace analyses.

	GC Parameters
GC:	GC/FID
Column:	Restek Rt-U-Bond 15m x 0.53mm x 20µm, 1.0 psi constant pressure
Oven Program:	35° C for 4 min, 20° C/min to 190° C hold for 2 min
Inlet:	190° C
Gas:	Helium
Split Ratio:	20:1

FID Parameters			
Temperature:	190°C		
Hydrogen Flow:	35 mL/min		
Air Flow:	300 mL/min		
Mode:	Constant Makeup Flow		
Makeup Flow:	30 mL/min		
Makeup Gas:	Helium		

Tables 1 & 2: GC and FID Parameters

Stratum PTC and AQUATek 100 Parameters				
Variable	Value	Variable	Value	
Pressurize Time	0.35 min	Purge Time	1.5 min	
Sample Transfer Time	0.35 min	Purge Temp	20° C	
Rinse Loop Time	0.30 min	Purge Flow	10 mL/min	
Sweep Needle Time	0.30 min	Dry Purge Time	0.0 min	
Bake Rinse	On	Dry Purge Temp	20° C	
Bake Rinse Cycles	1	Dry Purge Flow	100 mL/min	
Bake Rinse Drain Time	0.35 min	GC Start	Start of Desorb	
Presweep Time	0.25 min	Desorb Preheat Temp	95° C	
Water Temp	90° C	Desorb Drain	On	
Valve Oven Temp	80° C	Desorb Time	2.00 min	
Transfer Line Temp	80° C	Desorb Temp	100° C	
Sample Mount Temp	60° C	Desorb Flow	300 mL/min	
Purge ready Temp	35° C	Bake Time	15.00 min	
Condenser Ready Temp	40° C	Bake Temp	100° C	
Condenser Purge Temp	20° C	Bake Flow	400 mL/min	
Standby Flow	10 mL/min	Condenser Bake Temp	200° C	
Pre-Purge Time	0.5 min			
Pre-Purge Flow	40.0mL/min			
Sample Heater	Off			
Sample Preheat Time	1.00 min			
Sample Temp	40°C			

Table 3: Stratum PTC and AQUATek 100 Parameters (Stratum PTC Parameters are in Blue)

Teledyne Tekmar HT3 Parameters					
Variable	HT3	Versa			
Constant Heat Time	On	N/A			
GC Cycle Time	21.00 min	21.00 min			
Valve Oven Temp	100° C	100° C			
Transfer Line Temp	100 °C	100° C			
Standby Flow Rate	50 mL/min	N/A			
Platen/Sample Temp	64° C	64° C			
Platen Temp Equil Time	0.50 min	0.50 min			
Sample Equil Time	30.00 min	30.00 min			
Mixer	Off	Off			
Mixing Time	5.00 min	2.00 min			
Mixing Level	Level 5	Medium			
Mixer Stabilize Time	0.50 min	0.50 min			
Pressurize	10 psig	10 psig			
Pressurize Time	2.00 min	2.00 min			
Pressurize Equil Time	0.20 min	0.25 min			
Loop Fill Pressure	7 psig	7 psig			
Loop Fill Time	2.00 min	2.00 min			
Inject Time	0.50 min	0.50 min			

Table 4: HT3 and Versa Automated Headspace Parameters (gray parameters were not used).

Sales/Support: 800-874-2004 · **Main:** 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040

Calibration Data

To make the stock solutions, a 500 mL volumetric flask filled with de-ionized water was placed in an ice water bath and purged with a reference gas corresponding to each of the four analytes. Each gas was bubbled through chilled water for two hours to make individual concentrated standards. Unlike in RSK 175¹, calibrations in BOL6019² are performed using aqueous rather than gaseous standards. This study also employs an aqueous calibration, where standards are analyzed under the same conditions as samples.

Calibration standards were made from serial dilutions of these stock standards by calculating the concentration of saturated gas solutions in water at 0°C. For example, the saturation point of methane in 0°C water is 39.59 mg/L at atmospheric pressure. Calibration standards were made in 50 mL volumetric flasks filled to volume with chilled de-ionized water over a range of 7.92 ppb to 19.8 ppm. Samples were transferred to headspace free 40 mL vials for analysis. These standards were additionally made for the remaining compounds of interest. Similarly, calibration standards for the headspace analysis were generated from dilutions of this stock standard, but due the fixed volumes used in the method the calibration ranges differed slightly from the purge and trap method.

The calibration data generated during this study was evaluated by linearity (r^2) and percent Relative Deviation (%RSD). Method detection limits were also established for all compounds by analyzing seven low level replicates. Calibration data and MDLs can be found in Table 5 for the P&T method and Table 6 for the HT3 and Versa. In addition, an example of an overlay chromatogram showing each standard can be found in Figure 3. Figure 4 presents a chromatogram of a mixed gas standard as well as an overlay showing there is no discernible difference in response between the headspace systems. A blank analyzed after the highest calibration standard was used to calculate the percent carryover for the P&T method which was less than 0.04% for all compounds.

Compound	Calibration Range	Relative Response Factor (RRF)	Linearity (r ²)	% Relative Deviation (%RSD)	Method Detection Limit (MDL)	% Carryover
Methane	7.92 ppb to 19.8 ppm	166	1.000	2.0	0.4 ppb	0.04%
Ethene	56.2 ppb to 281 ppm	587	0.9995	4.5	31 ppb	0.03%
Ethane	26.4 ppb to 132 ppm	621	0.9998	13.9	21 ppb	0.04%
Propane	29.4 ppb to 147 ppm	803	0.9999	12.0	18 ppb	0.04%

Table 5: Calibration and MDL Data for Methane, Ethane, Ethene, and Propane using the Stratum PTC

Sales/Support: 800-874-2004 · **Main:** 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040

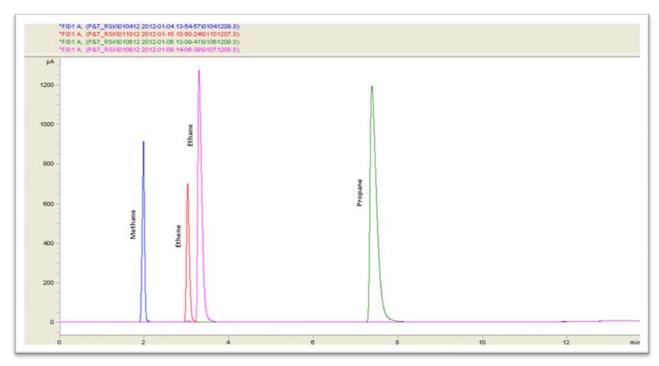


Figure 3: Overlay Chromatograms of Gas Standards using the Purge and Trap method

Compound	Calibration Range	Linearity (r ²)		% Relative Standard Deviation (%RSD)		Method Detection Limit (MDL)	
		HT3	Versa	НТ3	Versa	НТ3	Versa
Methane	20 ppb to 24 ppm	0.9981	0.9958	3.8	6.6	2 ppb	2 ppb
Ethene	141 ppb to 169 ppm	0.9979	0.9966	6.2	11.1	25 ppb	19 ppb
Ethane	66 ppb to 79 ppm	0.9987	0.9992	6.0	8.1	5 ppb	7 ppb
Propane	74 ppb to 88 ppm	0.9989	0.9992	2.2	5.1	6 ppb	4 ppb

Table 6: Calibration Data for Methane, Ethene, Ethane, and Propane using the HT3 and Versa Headspace Analyzers

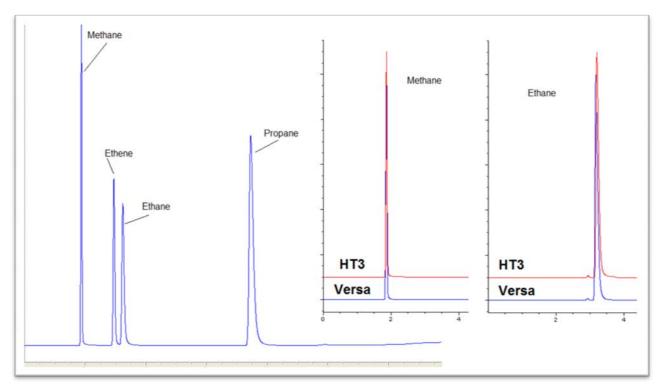


Figure 4: Gas Chromatogram Comparison of Methane and Ethane between the HT3 and the Versa and a Chromatogram of the Four Gases.

Conclusions

With increased interest in alternative energy sources, hydraulic fracturing has become a common practice in the extraction of natural gas from coalbeds and shale formations across the United States. Unfortunately, there has not been adequate time to measure the environmental impact of these procedures. Regulatory agencies are looking for easy and reliable testing methods to monitor these effects.

This study demonstrates methods for analyzing these gases using the Teledyne Tekmar's Stratum PTC/AQUATek 100 Autosampler and HT3 and Versa Headspace analyzers coupled with a GC/FID system. These methods met all performance criteria outlined in the current Headspace methods, RSK 175¹ and BOL6019². By completely automating the sample preparation, efficiency and throughput can be greatly increased while saving time and money. Using the purge and trap method, there is no need to manipulate the samples which eliminates the potential for human error and employs instrumentation already familiar to many environmental laboratories.

References

- 1. "Analysis of Dissolved Methane, Ethane, and Ethylene in Ground Water by a Standard Gas Chromatographic Technique", Don H. Kampbell and Steve A. Vandegrift, *Journal of Chromatographic Science*, Vol. 36, 253256, May 1998.
- 2. "C1 to C3 Dissolved Gases via Headspace and GC/FID, Revision 5", PA Dept. of Environmental Protection, Feb 2011.
- 3. "Annual Energy Outlook 2009", Energy Information Administration, http://www.eia.gov/oiaf/archive/aeo09/pdf/0383(2009).pdf
- 4. "Natural Gas Drilling and Water", Tip of the Mitt Watershed Council, http://www.watershedcouncil.org/learn/hydraulic-fracturing/
- 5. "The Facts about Hydraulic Fracturing" Ohio Department of Natural Resources, http://www.ohiodnr.com/Portals/11/pdf/fracking-fact-sheet.pdf
- 6. Hydraulic Fracturing, United States Environmental Protection Agency, http://www.epa.gov/hydraulicfracturing
- 7. "Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays", Energy Information Administration, http://www.eia.gov/analysis/studies/usshalegas/