Application Note: 30127

Speciation of Trace Elemental Species using GC-ICP-MS and GC-HR-ICP-MS

Shona McSheehy, Julian Wills, Hans-Jürgen Schlüter, Torsten Lindemann, Meike Hamester, Thermo Fisher Scientific, Bremen, Germany

Introduction

• ELEMENT 2

Key Words

- XSERIES 2
- Gas Chromatography
- Mercury
- Speciation
- Tin

The significance of speciation for accurately understanding the true nature of trace elements in the environment, industrial processes and biochemical pathways is a well acknowledged fact. Physiochemical information such as toxicity, bioavailability, mobility and reactivity are dependent on the specific form of an element and cannot be assessed from total element concentrations alone. Due to this fact, requirements for speciation information are emerging in legislation, particularly for highly toxic species such as organotins, methylmercury and brominated flame retardants. For example, recent amendments to the EU Water Framework Directive (www.euwfd.com) stipulate annual average and maximal concentrations at sub-ng/L level for organotins and pentabromodiphenylether (Table 1).

Species	AA	MAC
Mercury and its compounds	50	70
Tributyltin compounds	0.2	1.5
Pentabromodiphenylether	0.5	NA
AA - annual average, MAC - max NA - not applicable	imum allowable coi	ncentrations,

Table 1: Environmental quality standards for inland surface waters, concentrations in ng/L.

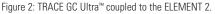

GC-ICP-MS is one of the only speciation techniques capable of reaching the ultra trace levels required by this legislation. GC-ICP-MS coupling kits for the Thermo Scientific XSERIES 2 (Quadrupole ICP-MS) and Thermo Scientific ELEMENT 2 (Sector-Field ICP-MS) offer an off-the-shelf and simple solution for this type of application.

Figure 1: Thermo Scientific TRACE GC Ultra coupled to the XSERIES 2.

The dual mode GC interfaces allow simultaneous introduction of both a nebulized aqueous solution and the volatile species from the GC into the plasma. In this way, external standards can be simultaneously analyzed and a more robust plasma for superior stability is produced (Figure 3). A direct comparison of the two techniques, GC-ICP-Q-MS and GC-ICP-SF-MS was performed for mercury and tin species. Chromatographic reproducibility between the two techniques was evaluated and the potential advantage of the higher sensitivity offered by Sector-Field ICP-MS for the extremely demanding reporting limits which will be required to meet such legislation as the EUWFD was investigated by comparing limits of detection (LOD).



Figure 3: Stability of trace elemental species over a period of 15 h of repeat injections.

Experimental

The GC parameters for the XSERIES 2 and ELEMENT 2 are shown in Table 2. For comparative purposes, wherever possible, analytical conditions were matched for both ICP-MS instruments. The XSERIES 2 was used in Xs-mode for high sensitivity and the ELEMENT 2 was used with X cones.

PTV, splitless	
250 °C with ramp to 400 °C	
1 μL	
He at 3 mL/min	
50°C (1 min), ramp at 30°C/min to 300°C (1 min)	
Thermo Scientific TRACE Tr-5 GC column, 30 m x 0.25 mm ID, 25 µm	

Table 2: GC parameters.

Sample Preparation

Individual stock solutions of tin species were prepared by dissolving appropriate quantities of commercially available salts in ultra-pure grade methanol. Dilutions of the stock were performed in 1% HCl. Working calibration standards were then prepared in the 0.1 - 2 ng/mL range and derivatized by agitating for approximately 5 minutes with 1 mL 1% NaBEt₄ and 1 mL hexane in 5 mL acetate/acetic acid buffer (0.1 M) at pH 4.9. The top organic layer was then transferred to a 2 mL GC vial for injection.

Results

XSERIES 2

The chromatographic data is displayed automatically in the XSERIES 2 PlasmaLab software (Figures 4a and 4b). A low degree of data smoothing was applied and an automated peak search feature ensured identical integration parameters for each sample in the experiment list. Fully quantitative calibration curves were then generated and show excellent linearity for each species (Figure 5 presents calibration data for monobutyltin (MBT)).

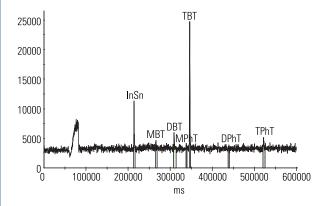


Figure 4a: Chromatographic data for a blank injection displayed in the XSERIES 2 PlasmaLab software.

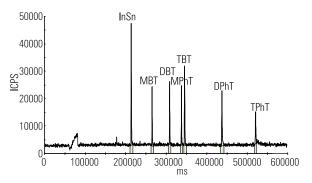


Figure 4b: Chromatographic data for a 0.1 ng/ml standard of various Sn species displayed in the XSERIES 2 PlasmaLab software.

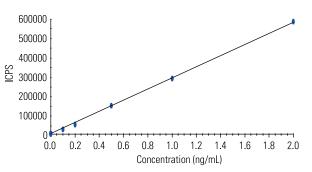


Figure 5: Calibration curve generated in PlasmaLab for MBT.

ELEMENT 2

The chromatographic data is displayed off-line in Qual Browser of the Thermo Scientific Xcalibur software (Figures 6a and 6b).

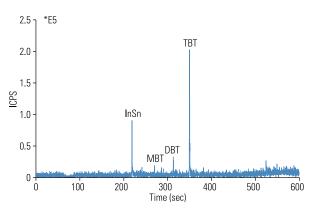


Figure 6a: Chromatographic data for a blank injection on the ELEMENT 2 displayed in Xcalibur™ Qual Browser.

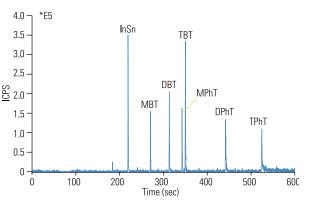
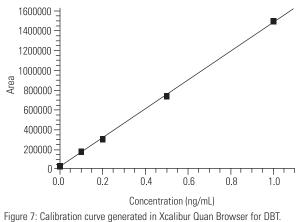



Figure 6b: Chromatographic data for a 0.1 ng/mL injection on the ELEMENT 2 displayed in Xcalibur Qual Browser.

Peak integration and quantification was performed in Xcalibur Quan Browser and a fully quantitative calibration curve is presented for dibutytin (DBT) in Figure 7.

GC-ICP-MS data acquired with the XSERIES 2 and the ELEMENT 2 were directly compared to assess the reproducibility and robustness of the techniques. Comparison of the chromatographic separation of the Hg and Sn species by both instruments is presented in Figures 8a and 8b respectively. The chromatograms show identical peak shapes and retention times. The superior sensitivity of the ELEMENT 2 is highlighted by the 8-fold increase in peak intensity compared to the XSERIES 2.

Furthermore, the sensitivities, assessed as peak area per ng/mL, of the XSERIES 2 and ELEMENT 2 (Figure 9a) clearly demonstrates the higher sensitivity of the ELEMENT 2. Limits of detection were calculated as 3 times the standard deviation of species concentrations determined in 5 blanks and are shown in Figure 9b.

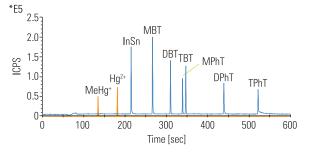


Figure 8a: Multi-element chromatographic data of a 0.5 ng/mL standard acquired with GC-XSERIES 2.

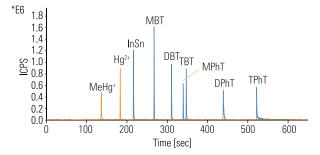


Figure 8b: Multi-element chromatographic data of a 0.5 ng/mL standard acquired with GC-ELEMENT 2.

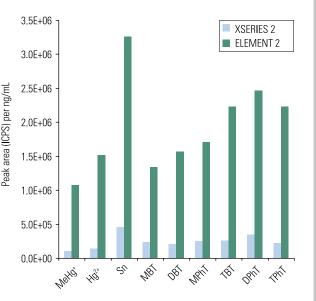


Figure 9a: Sensitivity per ng/mL for the XSERIES 2 and ELEMENT 2.

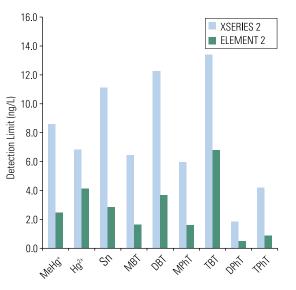


Figure 9b: Limits of Detection in ng/L for XSERIES 2 and ELEMENT 2.

Conclusions

- GC-ICP-MS is a valuable tool for speciation of ultratrace elemental species. GC coupling kits with either quadrupole or sector field instruments provide a solution for the multi-elemental speciation of elements such as Hg and Sn. After suitable sample preparation, the speciation methodology shown here can be applied to a number of matrices for direct quantification and monitoring of elemental species. (See AN30132: A Novel GC-ICP-MS Approach for Speciation of Sulfur in Reformulated Fuels as a further example).
- The highest sensitivity and lowest limits of detection were obtained with GC coupled to the ELEMENT 2. Sector Field ICP-MS with GC is therefore more suited for the more demanding applications where extremely low reporting limits would be required.
- For example, with the ELEMENT 2 as detector to the GC, ultra-trace levels of species found in surface waters can be accurately quantified without the need for awkward sample preparation approaches such as large sample volumes or organic phase reduction.

Thermo Scientific Application Components

XSERIES 2 GC coupling kit (PS40674)	PN 4600503
ELEMENT 2 GC coupling kit (PS30154)	PN 1225260
TRACE [™] GC column, Tr-5 30 m x 0.25 mm ID, 0.25 µm	PN 260E142P

To find out more about our GC columns offering please visit: www.thermo.com/columns

Chemicals used in this Experiment

Fisher Scientific Catalogue Number	
A38S-500 (US) A/0400/PB15 (Europe)	
H303-1	
A466-500 (US) H/1205/08 (Europe)	
A456-1	
A467-1 (US) N/2275/15 (Europe)	
36388-0010	
S210-500 (US) S/2120/53 (Europe)	

For more information please contact your local Fisher Scientific organization and/or visit : www.fishersci.com & www.acros.com

Related Products for the Determination of Trace Elemental Species

Thermo Scientific DFS High Resolution GC/MS

New amendments to the Water Framework Directive will require reporting limits of less than 0.5 ppt of pentabromodiphenylether in inland waters. Using the DFS high resolution GC/MS, polybrominated diphenyl ethers (PBDE) can be analyzed with highest selectivity providing on-column LOQs in the low femtogram range.

For further information please visit our website www.thermo.com/dfs

In addition to these offices, Thermo Fisher Scientific maintains a network of representative organizations throughout the world.

Africa-Other

China +86 10 8419 3588

Denmark +45 70 23 62 60 **Europe-Other**

+43 1 333 50 34 0 Finland/Norway/ Sweden +46 8 556 468 00

France +33 1 60 92 48 00 Germany +49 6103 408 1014

India

Italy +39 02 950 591

Japan +81 45 453 9100

Latin America +1 608 276 5659 Middle East

+43 1 333 50 34 1 Netherlands +31 76 579 55 55

South Africa +27 11 570 1840

Spain +34 914 845 965 **Switzerland** +41 61 716 77 00

UK +44 1442 233555 USA +1 800 532 4752

www.thermo.com

Thermo Fisher Scientific (Bremen) GmbH is certified DIN EN ISO 9001:2000 AN30127_E 01/09C

Thermo s c i e n t i f i c

©2009 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.