Using the LCMS-IT-TOF to identify impurities in pharmaceutical candidates using high mass accuracy and MSⁿanalysis

Overview

Objective.

Structural elucidation for impurities in Erythromycin A oxime

Strategies.

Using accurate mass information and pattern matching with MS/MS spectra of pharmaceutical drug candidate, we have attempted to elucidate the structure of all suspected impurities.

Results

Several by-products were identified by LC/UV/MS.

Component 1

Loss of a methyl group in Area B replaced by a hydrogen

Component 2

Loss of a methyl group in Area A replaced by a hydrogen

Component 3

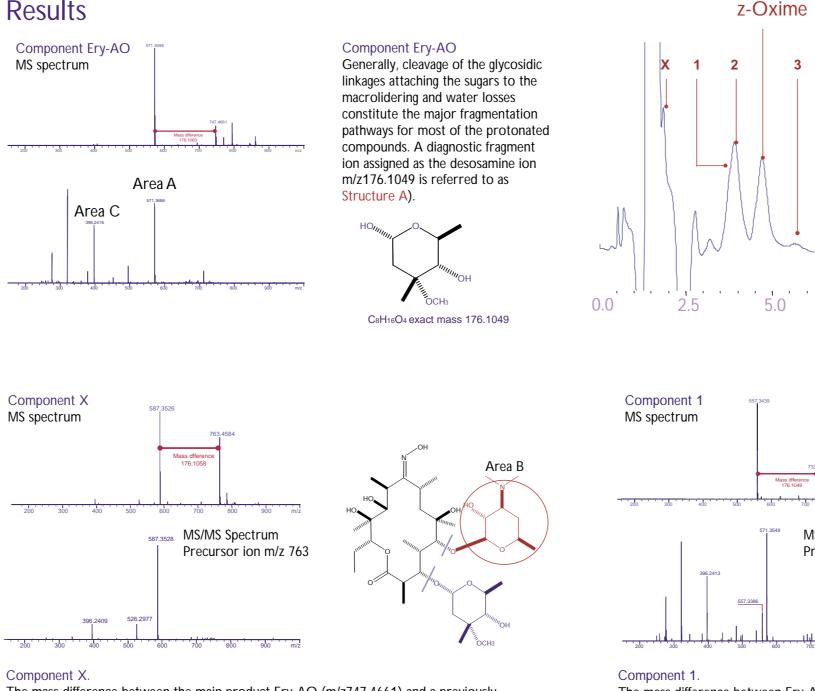
Mass spectrum inconsistent with erythyromycin and not related.

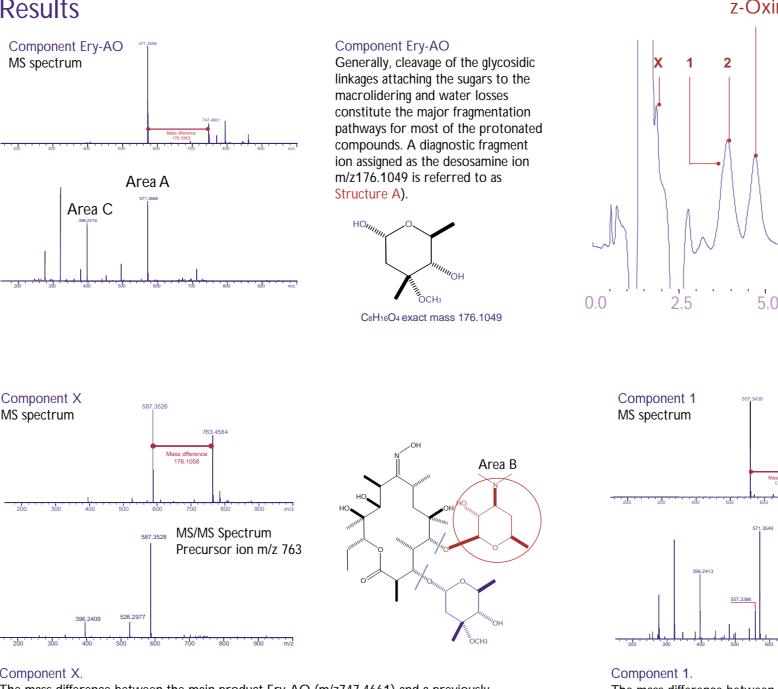
Component 4

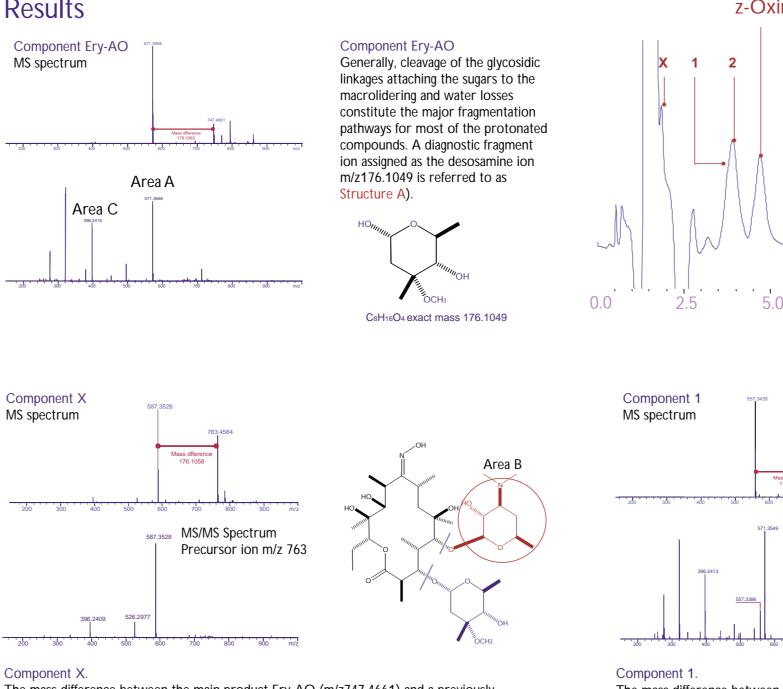
2 products. Product 4.1 relates to an additional methyl group present in Area C. Product 4.2 corresponds to a loss of oxygen from Area C.

Component X

An additional oxygen in Area B

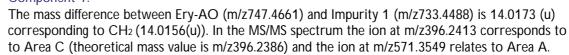

Introduction


In the development of pharmaceutical candidates it is critical to identify by-products of the reaction mixture. In this paper we describe the application of a novel hybrid instrument platform delivering high mass accuracy data and MSn analysis in identifying impurity products from a relatively impure pharmaceutical candidate.


Methods

Instrument configuration	
Liquid Chromatograph Mass Spectrometer	LCMS-IT-TOF
Pump	LC-10ADVP
Auto Injector	SIL-10ADVP
Column Oven	CTO-10Avp
LC conditions	
Column	XterraMS C18 3.5 μm(2.1 mml.D. × 100 mmL.)
Mobile Phase	0.1% NH4OH/CH3CN(50/50)
Flow Rate	0.2 mL/min
Injection Volume	10µL
Temperature	Ambient
Mass spectrometry conditions	
Ionization mode	Electrospray positive ion mode
Spray Gas flow rate	1.5 L/min
Drying gas pressure	0.1 MPa
Voltage	-3.5 kV
CDL Temperature	200 °C
BH Temperature	200 °C
	200 0
	OH
	Ĭ
Erythromycin is an important 14	Area C
membered macrolide antibiotic active	
against gram-positive bacteria.	HO OH HO
-g g p	
In developing commercial antibiotics it	Mu.
is important to fully characterise	unun unun unun
impurities (or by-products).	
The chemical structure can be simply	
represented as 3 domains or areas. In	
this regard we have nominated area A	Area A
to correspond to the desosamine	ининон
sugar whilst area B relates to	
cladinose.	OCH3

Results



The mass difference between the main product Ery-AO (m/z747.4661) and a previously unknown Impurity labeled 'X' (m/z763.4584) is 15.9923 (u). This mass difference is equal to Oxygen, O (15.9949(u)) and provides strong evidence that this impurity has the structure with a single Oxygen atom in 'Area B' of the molecule

info@shimadzu-biotech.net

www.shimadzu-biotech.net

As a result, the difference in structure can be assigned to a loss of a methyl group in Area B.

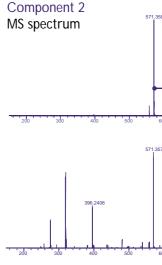
MS/MS Spectrum

Precursor ion m/z 733

Ery-AO

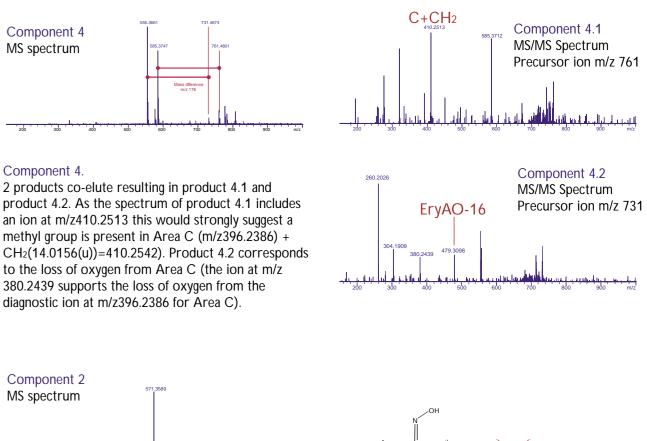
UV Chromatogram

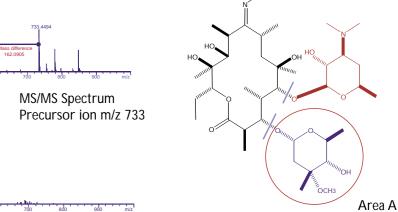
12.5


min

10.0

Component 4 MS spectrum


Component 4.


2 products co-elute resulting in product 4.1 and product 4.2. As the spectrum of product 4.1 includes an ion at m/z410.2513 this would strongly suggest a methyl group is present in Area C (m/z396.2386) + to the loss of oxygen from Area C (the ion at m/z 380.2439 supports the loss of oxygen from the diagnostic ion at m/z396.2386 for Area C).

Component 2. In the MS spectrum the mass difference between m/z733.4494 and m/z571.3589 is 162.0905 (u). This mass difference is 14.0144 (u) and corresponds to CH₂ (14.0156 (u)). As the m/z396.2406 ion is present (Area A) and the ion at m/z571.3575 is also present (relating to the loss of Area A and a CH₂group) the data is consistent with the loss of a methyl group in Area A.

Component 2 is a loss of a methyl group in Area A.

3295-12507-10A-IK

