DOING MORE WITH LESS: ADDRESSING THE MICROSAMPLING SENSITIVITY CHALLENGE IN DMPK STUDIES USING VACUUM JACKETED COLUMN & UHPLC-CYCLIC ION MOBILITY MS

Authors: Andrew Leightner¹, Russell Mortishire-Smith², Billy J. Molloy², Robert S. Plumb¹, Ian D. Wilson³, Affiliations: ¹Waters Corporation, Milford, USA, ²Waters Corporation, Wilmslow, UK, ³Imperial College, London, UK

PHARMACOKINETICS

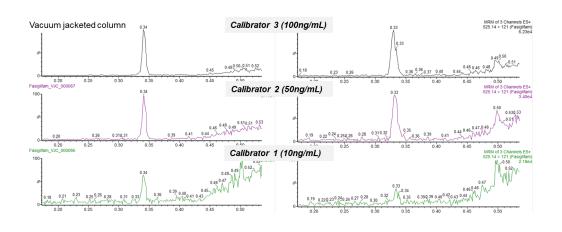
UHPLC/MS/MS QUANTIFICATION

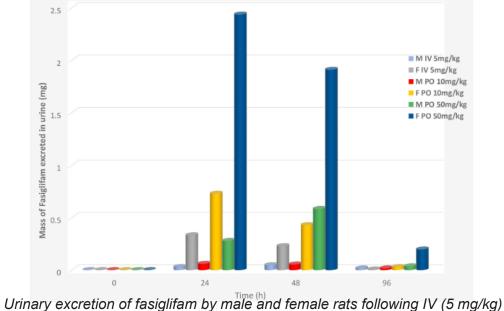
Sample Preparation

 Study plasma samples (10µL extracted using 4:1 MeCN protein ppt, supernatant diluted 1 / 100 in 25% Water

UHPLC/MS/MS Methodology

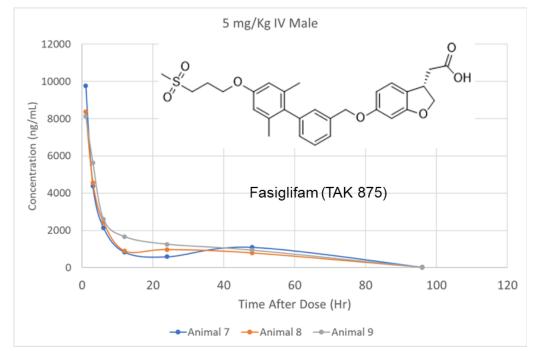
- ACQUITY[™] Premier UPLC[™], Xevo[™] TQ-S micro MS
- Reversed—phase chromatography, aqueous formic scid (0.1%) vs acetonitrile, 50 – 60% B over 0.9 mins @ 0.5ml/ min. BEH™ C18 2.1 x 50mm, 1.7 µm, in Vacuum Jacketed Column Format, temperature 60 °C
- Positive Ion Esi, MRM 525.14 -> 121
- MassLynx[™] software, 4.2, TargetLynx[™] software



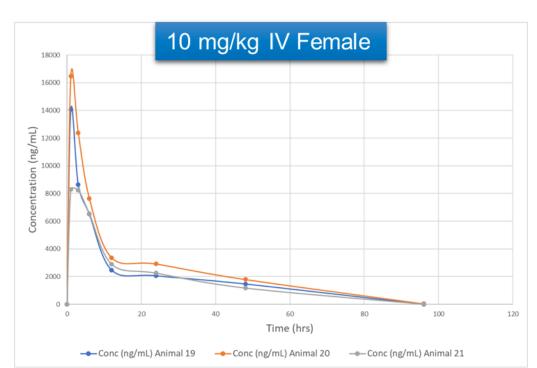


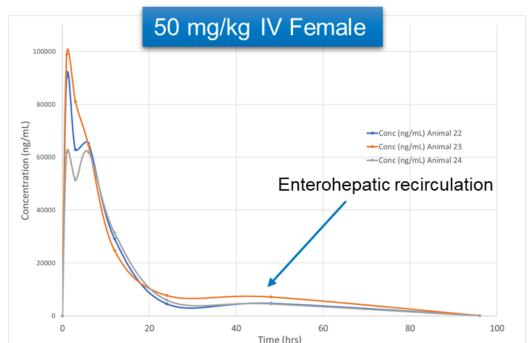
VACUUM JACKETED COLUMN

Improved LC/MS/MS Performance Using Vacuum Jacketed Column


- Improved Sensitivity
- Faster Analysis
- Improved resolution from endogenous material

and PO (10 and 50 mg/kg) administration.


INTRAVENOUS DATA



	Units	5mg/kg IV Male	5mg/kg IV Female	10m/kg Oral Male	10mg/kg Oral Female	50mg/kg Oral Male	50mg/kg Oral Female
T max_obs	h	1	1	1	1	1	1
C max	(µg/mL)	8.8	9.2	12.4	12.9	76.2	83.7
Vd	Ĺ	0.56	0.47	0.61	0.67	0.56	0.53
t 1/2	Hr	12.4	11.2	11.1	11.6	10.3	9.8
CI	L/hr	1.70	1.40	1.71	1.51	1.14	0.83
AUC 0-96 h	mg/ml*h	0.10	0.11	0.17	0.20	1199	1189
Vd (derived)	mĽ/kg	542.4	528.3	326.8	359.4	68.5	88.9
Oral bioavailability (%)	F	-	-	85.0	90.9	119.9	108.1

Pharmacokinetics following IV administration at 5mg/kg, and oral administration at 10mg/kg & 50mg/kg PO to male and female rats

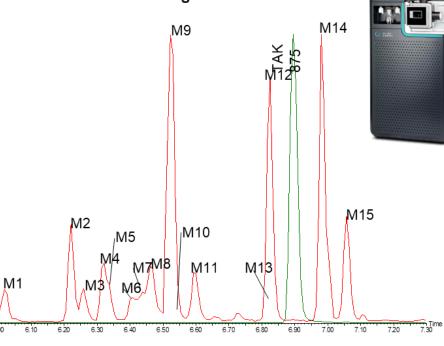
ORAL DATA

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

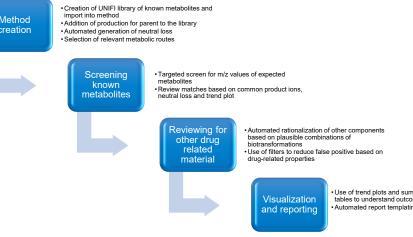
	CHALLENGE					
Understanding	l					
Maximizing in	Samp					
Sensitivity for	PK elimination phase and metabolite identification					
Rapid "data tu	irn around"	UHPI				
Simplifying da	ata analysis and structural elucidation in complex matrices					
	STUDY					
	STUDY					
2 .	5), GPR40 agonist developed for the treatment of Type II diabetes [1]					
	e III clinical trails due to concerns regarding liver toxicity [2]	Plas				
-	observed in preclinical studies	100- 				
	DMPK of TAK 875 and identify possible toxic biotransformations					
 Blood samples (50µ 	L) taken using tail bleed capillary sampling					
4 Dose Groups		- es				
(males & Females)	Vehicle Oral Dose Oral Dose IV Dose					
	10mg/Kg 50mg/Kg 5mg/Kg					
Plasma	Pre dose, 1hr, 3hr, 6hr, 12hr, 24hr, 48hr, & 96hrs					
collection		с і				
	Pre dose, 0-24hr, 24-48hr, 48-96hr	Data				
Urine						
collection						
	24, 48, and 96hrs					
Tissue						
collection						
	CONCLUSION					
 A ranid specific method 	for the quantification of fasiglifam in rat plasma using VJC UHPLC-MS-MS was					
developed [3]		Imp				
Microsampling facilitated	full PK profile and metabolite identification, using just 3 animal per dose group.	40000				
 IV (5 mg/kg) peak plasma 	1 30000 - 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
 PO peak plasma concentration female rats respectively. 	ations = 12.4/12.9mg/mL (10 mg/kg) & 76.2/83.7mg/mL (50mg/kg) doses for male /	10000 - 0 -				
	h (female).Oral bioavailability was estimated to be 85-120% in males and females.	4000 - 월 3000 -				
	 UHPLC/cIM/MS analysis of plasma identified 15 biotransformation and 3 novel metabolites of the drug including acyl glucuronide. 					
	•	- 20000 - 1 10000 - 10000 -				

Waters[™]

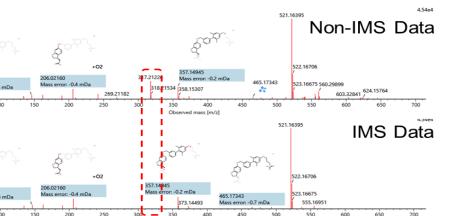
BIOTRANSFORMATIONS HPLC-cIM-MS METABOLITE ID

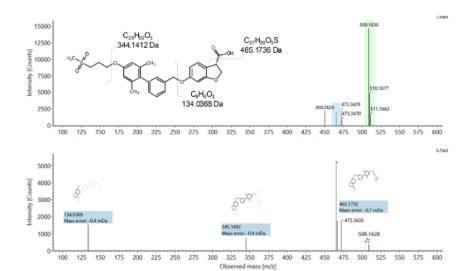

Preparation

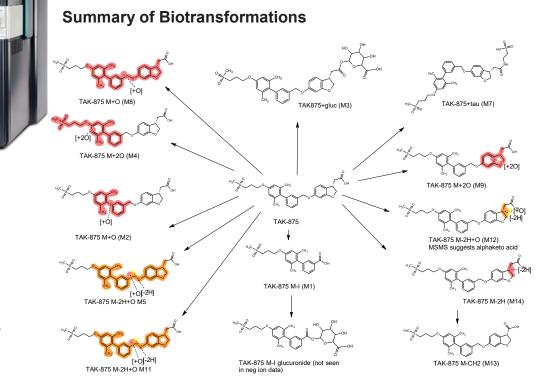
Plasma samples extracted using 4:1 MeCN protein precipitation, diluted 1 / 100 in 25% Water prior to analysis (10µL injected)


MS/MS Methodology

- ACQUITY Premier UPLC , Select Series™ Cyclic™ IMS Mass Spectrometer
- RPLC using ACQUITY Premier HSS T3 C18 2.1 x 100mm 1.7µm column (40 °C), eluted with , formic acid (aq) (0.1%) vs MeCN gradient at 0.5ml/min 40 70% B over 10 mins
- Positive & negative Ion Esi cIMS HDMSe 50 1200 m/z
- Nitrogen used for ion mobility gas


UHPLC-IM-MS Chromatogram


alysis Workflow



d MS Spectral Quality With Drift-Time Aligned Data

New, Possibly Toxic, Metabolite of Fasiglifam

Label	Component Name	Formula	Observed m/z	Mass error (ppm)	Observed CCS (Å ²)	Observed tR (min)	Common Neutral Losses	Common Fragment Ions	Total Fragments Found	Response
M1	Tak875 M-I	C19H22O5S	361.1111	-1.2	199.7	6.03	TRUE	FALSE	1	1908
M2	Tak875 + 0	C29H32O85	539.1739	-1.1	219.8	6.22	TRUE	TRUE	6	6020
M3	Tak875-G	C35H40O13S	699.2113	-0.5	246.3	6.26	FALSE	FALSE	1	2523
M4	Tak875 + 02	C29H32O9S	555.1687	-1.2	222.9	6.32	FALSE	TRUE	4	4281
M5	Tak875 + O-H2	C29H30O8S	537.1585	-0.7	220.2	6.34	TRUE	FALSE	3	1036
M6	Tak875 + O2	C29H32O9S	555.1688	-1.1	224.3	6.41	TRUE	FALSE	1	787
M7	Tak875-tau	C31H37NO9S2	630.1836	-0.2	238.4	6.44	TRUE	FALSE	1	3834
M8	Tak875 + O	C29H32O8S	539.1743	-0.3	220.8	6.46	TRUE	FALSE	5	3812
M9	Tak875 + O2	C29H32O9S	555.1690	-0.7	221.1	6.53	FALSE	FALSE	12	19155
M10	Tak875 + O	C29H32O8S	539.1738	-1.2	220.3	6.54	FALSE	FALSE	7	1162
M11	Tak875 + O-H2	C29H30O8S	537.1586	-0.5	220.0	6.6	TRUE	FALSE	5	3173
M12	Tak875 + O-H2	C29H30O8S	537.1583	-1.1	219.0	6.83	TRUE	FALSE	5	12403
M13	Tak875-CH2	C28H30O7S	509.1636	-0.8	214.8	6.83	TRUE	FALSE	4	2277
	(from side chain)									
M14	Tak875-H2	C29H30O7S	521.1636	-0.6	217.8	6.98	TRUE	TRUE	8	19205
M15	Tak875-H2	C29H30O7S	521.1638	-0.3	218.1	7.06	TRUE	TRUE	7	6973

References

- Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R.2016. Long-term safetyand efficacy of fasiglifam (TAK-875), a G-protein-coupled receptor 40agonist, as monotherapy and combination therapy in Japanesepatients with type 2 diabetes: a 52-week open-label phase III study. Diabetes Obes Metab. 18 (9):925–929.
- 2. Li X, Zhong K, Guo Z, Zhong D, Chen X.2015. Fasiglifam (TAK-875) inhib-its hepatobiliary transporters: a possible factor contributing to fasigli-fam-induced liver injury. Drug Metab Dispos. 43(11):1751–1759.
- 3. Molloy BJ, King A, Gethings LA, Plumb RS, Mortishire-Smith RJ, Wilson ID. Investigation of the Pharmacokinetics and Metabolic Fate of Fasiglifam (TAK-875) in Male and Female Rats Following Oral and Intravenous Administration. Xenobiotica. 2023 16 1-30. doi: 10.1080/00498254.2023.
- 4. Nikunj Tanna, Robert S. Plumb, Billy J. Molloy, Paul D. Rainville, Ian D. Wilson. Enhanced chromatographic efficiency obtained with vacuum jacketed columns facilitates the rapid UHPLC/MS/MS -based analysis of fasiglifam in rat plasma, Talanta, 2023. 254, 124089. https://doi.org/10.1016/

ACQUITY, UPLC, Xevo, BEH, MassLynx, TargetLynx, SELECT SERIES, Cyclic and UNIFI are trademarks of Waters Technologies Corporation