A SOFTWARE PACKAGE FOR SEQUENCE CONFIRMATION AND IMPURITY CHARACTERISATION **OF SYNTHETIC OLIGONUCLEOTIDES**

Chris Knowles³, Jo-Anne Riley², Emma Harry², Jonathan Fox², Catalin Doneanu¹, Ying Qing Yu¹ ¹Waters Corporation, Milford, MA, USA ²Waters Corporation, Wilmslow, UK ³Waters Corporation, Newcastle upon Tyne, UK.

INTRODUCTION

Synthetic oligonucleotides have emerged in recent years as a powerful alternative to small molecule and protein therapeutics. Manufacturing and quality control of oligonucleotide therapeutics requires highly selective and sensitive LC/MS methods for impurity sequencing and quantification. The most often used mass spectrometrybased method for oligonucleotide analysis has been reversed-phase chromatography employing a variety of ionpairing reagents and modifiers in negative ESI-MS mode (IP-RP LC-MS). One critical step for identification of oligonucleotide impurities is mass spectrometry-based sequencing and data interpretation. Here we introduce a software workflow that can identify impurities across batches of Gem91; a well characterised fully synthetic phosphorothioated antisense oligonucleotide therapeutic with inidcations for AIDS. Analysis was performed via LC-MS for intact mass assignment and sequence confirmation for both the target sequence and a coeluting PS>PO impurity via targeted MS/MS and untargeted (MS^E) fragmentation.

METHODS

Gem91 was used as a representative therapeutic oligonucleotide with the sequence:

dC* dT* dC* dT* dC* dG* dC* dA* dC* dC* dC* dA* dT* dC* dT* dC* dT* dC* dT* dC* dC* dT* dT* dC* dT*

(d = deoxyribose sugar, * = phosphorothioated backbone)

Two batches of Gem91 were analysed by IP-RP-UPLC-ESI-MS with an ACQUITY[™] Premier coupled to a Xevo[™] G3 QTof high resolution accurate mass MS

•ACQUITY Premier Oligonucleotide C18 Column, 130Å, 1.7 µm, 2.1 × 50 mm •TEA and HFIP in water and methanol based mobile phase system with 16-

minute run time

Data were processed using the INTACT Mass and CONFIRM Sequence apps within the compliant ready waters connectTM informatics platform.

ACQUITY, Xevo, waters connect the Xevo logo, and the ACQUITY PREMIER logo are trademarks of Waters Technologies Corporation.

RESULTS

An overview of the INTACT Mass deconvoluted results for batch 1 (left) shows the correct assignment of the target mass within 10ppm, which is confirmed via 100% sequence coverage using MS/MS and MSE fragmentation data in CONFIRM Sequence (right). Other impurities assigned to different peaks in the TIC include CNET and n-dCs, both of which are chromatographically separated from the main peak.

Figure 2

An overview of the INTACT Mass deconvoluted results for batch 2 (left) shows the target mass has failed identity testing, with an impurity assignment suggesting that there has been a PS>PO conversion event during synthesis (orange) that has coeluted with the main peak (peak 2). CONFIRM Sequence analysis of MSE fragmentation data (right) shows 56% coverage when the target sequence is used, with a loss of coverage in the center of the sequence, indicating that the impurity is located towards the center of the sequence.

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

Figure 3 CONFIRM Sequence analysis each PS>PO sequence variant using the MSE fragmentation data (top) shows 100% coverage for impurity sequences where a PS>PO conversion has occurred at position 14 or 15, with coverage results lower than 90% for all other Positions. An example fragmentation dot map (bottom) is shown for the sequence with a PS>PO conversion at position 14 (dC) highlighted orange.

References

CONCLUSION

• The compliant ready waters_connect[™] informatics platform contains dedicated software for oligonucleotide analysis

waters_connect[™] INTACT Mass software was able to identify the target mass and assign Impurities in a highly customizable method. Here we show that a failed batch has an assigned PO?PS conversion as a suggested impurity

waters_connectTM CONFIRM Sequence software is able to localize the tentatively assigned PS>PO conversion with 100% sequence coverage for 2 out of 25 possible positions (position 14 and 15)

1. Agrawal S, Tang JY. GEM 91--an antisense oligonucleotide phosphorothioate as a therapeutic agent for AIDS. Antisense Res Dev. 1992 Winter;2 (4):261-6. doi: 10.1089/ard.1992.2.261. PMID: 1363378

2. DeLano M, Walter TH, Lauber MA, Gilar M, Jung MC, Nguyen JM, Boissel C, Patel AV, Bates-Harrison A, Wyndham KD. Using Hybrid Organic-Inorganic Surface Technology to Mitigate Analyte Interactions with Metal Surfaces in UHPLC. Anal Chem. 2021 Apr 13;93(14):5773-5781. doi: 10.1021/acs.analchem.0c05203. Epub 2021 Apr 2. PMID: 33798331.

3. McLuckey SA, Van Berkel GJ, Glish GL. Tandem mass spectrometry of small, multiply charged oligonucleotides. J Am Soc Mass Spectrom. 1992 Jan;3(1):60-70. doi: 10.1016/1044-0305(92)85019-G. PMID: 24242838.

Waters™