Applying Quality by Design Principles to the Migration of a Compendial Method between Multiple HPLC Systems

Lise Gauthier, Paula Hong

Waters Corporation, Milford, MA 01757

CONTACT INFORMATION: Lise_Gauthier@Waters.com.

PURPOSE

Within the pharmaceutical industry, compendial LC methods are used to assess whether the regulatory specifications for raw materials or finished products are met. Analytical laboratories are often required to migrate these methods to different laboratories or different models of LC instrumentation. The methods may be migrated without revalidation, however equivalent performance must be demonstrated.

Method migration can be challenging. Differences across HPLC systems can impact method performance. A plan designed to identify and control how method performance is affected by differences in instrumentation is a valuable tool in obtaining a successful outcome.

Quality by Design (QbD) Principles were incorporated in the development of a plan to migrate the USP Ibuprofen Tablets Organic Impurities method from a legacy HPLC system (originator system) to two modern HPLC systems (receiver systems) from different instrument vendors.

METHOD(S)

Migration Plan

Utilizing QbD principles, a migration plan was developed. This involved a three-step process:

- 1. System Comparison
- 2. Risk Assessment
- 3. Control Strategy

Migrated Method

The USP Ibuprofen Tablets Organic Impurities method was migrated from a legacy HPLC system to two receiver systems. The method parameters are in Table 1.

METHOD: USP Ibuprofen Assay & Organic Impurities (Isocratic Reverse Phase Separation)				
Mobile Phase	4 g/L chloroacetic acid in 40:60 Water: Acetonitrile, pH 3			
Flow Rate	2.0 mL/min (isocratic)			
Run Time	10 minutes			
Injection Volume	10.0 µL			
Column Temperature	Ambient			
Sample Temperature	15.0 °C			
Column	XBridge™ C18 column: 4.6 x 250 mm, 5 µm (P/N 186003117)			
Detector	UV: λ = 254 nm			
Seal Wash	10:90 Acetonitrile: Water			
Needle Wash	90:10 Methanol: Water			
Purge Solvent	60:40 Acetonitrile: Water			

Table 1: Migrated HPLC Method

RESULT(S)

MIGRATION PLAN:

- method performance.

Legacy System	Receiver System 1, (Vendor 1)	Receiver System 2 (Vendor 2)
Quaternary	Quaternary	Quaternary
None	Standard (675 µL)	None
Automatic and continuous	Automatic and continuous	User defined
Flow through needle with split	Flow through needle	Flow through needle
injection		
Pre aspirate, post inject	Pre inject and/or post Inject	Pre inject
Installed	Installed	Installed
Passive heating	Passive heating	Passive heating
VWD	VWD	VWD
10 mm	10 mm	10 mm
16.3 μL	16.3 μL	14 μL
0.009"	0.005"	0.005"
0.005"	0.005"	0.007"
	Legacy System Quaternary None Automatic and continuous Flow through needle with split injection Pre aspirate, post inject Installed Passive heating VWD 10 mm 16.3 µL 0.009"	Legacy SystemReceiver System 1, (Vendor 1)QuaternaryQuaternaryNoneStandard (675 μL)Automatic and continuousAutomatic and continuousFlow through needle with splitFlow through needleinjectionPre inject and/or post InjectPre aspirate, post injectPre inject and/or post InjectInstalledInstalledPassive heatingPassive heatingVWDVWD10 mm10 mm16.3 μL0.005"0.005"0.005"

METHOD MIGRATION:

With the control strategy in place, the method was run on both receiver systems. Each of the systems met the pre-defined acceptance criteria for successful method migration, specifically the USP system suitability requirements for relative standard deviation, resolution, and signal to noise ratio. In addition to meeting the acceptance criteria, the two receiver systems showed improved peak area precision (%RSD) and increased sensitivity (higher signal to noise value) compared with the legacy HPLC system.

Parameter	Acceptance Criteria	Legacy LC System	LC System Vendor 1	LC System Vendor 2
%RSD Peak Area				
Related Comp J	NMT 6.0%	2.1%	0.1%	0.1%
Ibuprofen	NMT 6.0%	4.9%	1.1%	0.6%
Related Comp C	NMT 6.0%	2.4%	0.1%	0.1%
%RSD Retention Time				
Related Comp J	NMT 6.0%	0.2%	0.1%	0.1%
Ibuprofen	NMT 6.0%	0.2%	0.1%	0.1%
Related Comp C	NMT 6.0%	0.2%	0.1%	0.0%
Resolution				
Related Comp J – Ibuprofen	NLT 2.5	12.4	14.0	11.0
Ibuprofen - Related Comp C	NLT 2.5	7.5	8.6	7.2
Signal to Noise				
Ibuprofen	NLT 10	11	49	49

 Table 4: Method Migration Experimental Results

CONCLUSION(S)

Quality by Design principles were utilized for the development and implementation of a plan for the migration of the USP Ibuprofen Tablets Organic Impurities method between a legacy HPLC system and two modern HPLC systems from different instrument vendors. The approach identified each system's performance capabilities and provided an understanding of how different instrument parameters could affect method performance. Using this information, potential risks to a smooth method migration were identified, and a control strategy devised and implemented. The results obtained met acceptance criteria. Overall, the risk-based approach provided a proactive and successful strategy for method migration and the exercise demonstrated the performance benefits of keeping instrumentation assets up to date.

1. System Comparison: A review of each of the HPLC systems was conducted. Each of the receiver system to understand similarities and identify any differences that might impact

2. Risk Assessment: Identified system differences were examined to assess the risk level to each identified parameter. Injector carryover, detector noise, and tubing dimensions were identified as the parameters presenting the highest risk to successful method migration.

3. Control Strategy: A control strategy was devised for the parameters having the needle wash composition and number of washes to control carryover, ensuring an adequate lamp warm up time, defining the sampling rate and degassing the mobile phase to reduce noise, and adhering to the vendor recommended tubing dimensions for each system.

Parameter	Potential Impact	Control		
Injector Carryover	Signal to Noise Ratio, Precision, Accuracy	Define appropriate needle wash composition and number of washes in protocol.		
Detector Noise	Signal to Noise Ratio, Precision, Accuracy	Ensure adequate lamp warm up time. Define sampling rate in protocol. Degas mobile phase.		
Tubing Dimensions	Retention time, Resolution, Signal to Noise Ratio, Tailing	Adhere to the vendor's recommended tubing dimensions.		
Table 3: Risks and Control Strategy				

Figure 1: Ibuprofen Tablets Organic Impurities Standard Solution

REFERENCES

- 2021).

Figure 2: Ibuprofen Tablets Organic Impurities Sensitivity Solution

I. P. McGregor et al., *Mitigating Risk of Validated Analytical Procedure Failures When Upgrading or* Replacing LC Assets: Harnessing the Power of Quality by Design (QbD) Principles (Waters Corp.,

2. A. Dlugasch et al., Successful Global Cross Lab Method Transfer of a USP Organic Impurities Method to an Arc HPLC Using a Risk-based Approach (Waters Corp., 2021). 3. United States Pharmacopeia (2022). USP Monographs, Ibuprofen Tablets. USP-NF. Rockville, MD:USP. DOI: https://doi.org/10.31003/USPNF_M39890_01_01