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INTRODUCTION

The identification of unknowns using LC-MS has applications
across a broad range of fields from natural product
characterisation, drug metabolism, extractable and leachable
identification and impurity profiling. A common approach to
identification is the use of high-resolution mass spectrometry
to generate plausible elemental compositions, followed by
library matching to identify possible matches, and subsequent
product ion matching to determine which of the matches is
the most likely explanation for the experimental data. We
describe here the use of collision cross section (CCS)
prediction as an additional characterisation endpoint, and its
application to reduce false positives in the matching set.

METHODS

Experimental LC-IM-MS data was acquired on Q-IMS-oaToF
and IMS-Q-oaTof geometries. Following data processing,
selected peaks were subject to characterisation using UNIFI
or Progenesis QI Discovery tools. Briefly, this approach
involves determination of the most likely elemental
composition (including isotope pattern matching) and is then
used to search chemical knowledge databases for matching
compounds. For each match, the software calculates a
‘spectral matching %’, which is the fraction of the intensity of
the observed product ion spectrum which can be plausibly
derived from each match. Here, we additionally predict the
CCS value of each match using a machine learning model
called CCSondemand and derive the % difference between
the predicted and observed CCS values.

RESULTS

Here, we evaluate the ability of predicted CCS values to
reduce the number of plausible matches for putative
unknowns, as an adjunct to the more routinely used inputs of
m/z, isotope pattern, product ion spectrum and citation
counts.

Consider the case of 2-hydroxy-4-octyloxy benzophenone
(octabenzone), a commonly present additive in plastics, as a
hypothetical unknown (Figure 1). That is to say, experimental
data for octabenzone was used as the input to the Discovery
workflow, and an evaluation was made of the ability of the
workflow to return octabenzone as a high scoring match. In
the first step in the workflow we determine C,1H,s03; as the
most plausible elemental composition for this m/z value,
based on the precursor ion. This elemental composition is
passed to ChemSpider which returns more than 700 putative
matches which are ranked on the basis of number of citations
and product ion matching (Figure 2).

Only five of these are plausible fits to the observed product
ion spectrum. Two of these five are the same structure but
from different entries, leaving four matches (Figure 3).
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Figure 1. Extracted ion chromatogram for a putative unknown (here, octabenzone) which was spiked in as the ‘unknown’) in an
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Figure 2. UNIFI Discovery Tool outcomes.
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Figure 3. Highest probability matches returned by the UNIFI.Discovery tool to search ChemSpider for a search of this m/z value.
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The predicted intensity denotes the % of the observed product ion spectrum which can reasonably be expected from the pro-

posed structure.
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Figure 4. Schematic of CCSondemand.
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Figure 5: Performance of CCSondemand for a set of 500 ex-
tractables and leachables which were not in the machine
learning training set.

The structures of all four were used as input to in silico CCS
prediction using a platform we call CCSondemand’** (Figure
4), which generates a machine learning model from a set of
more than 5000 input datapoints and 200 two dimensional
molecular descriptors. The performance of this model was
evaluated by predicting CCS values for 500 extractable and
leachables, none of which were used in the training model
(Figure 5). Currently around 75% of predictions are within 3%
of experimental values, and 90% are within 5% of
experimental values

The predictions for each of the putative matches are shown
in Figure 6. Of the matches, one (buparvaquone) has a
predicted CCS value which is 6.7% different (A(CCS)) from
the observed CCS value (, suggesting that this is a false
positive match. Two of the four matches have intermediate
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Figure 6. CCS predictions from CCSondemand.
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Figure 7. Use of CCS prediction to support discrimination between putative matches for the elemental composition C;H;NO,, after

a search of HMDB...

A(CCS) values of 2.9 and 3.3%, meaning that they are less
plausible explanations, but which should not be ruled out. The
combination of citation scoring, fragment ion matching, and D
(CCS) then leads to octabenzone as being the most likely
explanation for these data.

The application of this approach to a metabolomics example
is summarised in Figure 7, in which a representative
biomarker was characterised by LC/IMS/MS on the VION
platform and the data analysed in Progenesis QI, which is
able to search HMDB for elemental composition matches.
This returns 6 isomeric structures are returned. One of these,
salicylamide can be rejected on the basis of a very poor
match between the structure and the observed product ion
spectrum. Calculation of DCCS using CCSondemand allows
three of the matches to be downgraded in likelihood because
the observed CCS value is very different from the predicted
value. Of the two remaining matches, trigonelline is more
likely, since it represents a primary metabolite, and this is the
correct answer.

CONCLUSION

In our investigations of the utility of CCS prediction to support
the characterization of unknowns, not every case was as
clear cut as the above examples. In some cases, CCS
predictions did not discriminate between sets of matches.
CCSondemand performs best with proton adducts, and less
well with sodium and potassium adducts. Where the
chemistries involved are not well represented in the model
basis set, predictions are also likely to be poorer.
Nonetheless, predictions of collision cross section seem to
afford a valuable addition to the unknown characterisation
toolkit, as long as circumspect use is made of the predictions
alongside hard experimental data points.
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