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Woaters

THE SCIENCE OF WHAT'S POSSIBLE."

INTRODUCTION

Dust analysis provides a means to assess the degree of
exposure to humans in an indoor environment to various
xenobiotic contaminant classes. Recent publications have
demonstrated implementation of non-targeted acquisitions
using high resolution mass spectrometry (HRMS) to
comprehensively profile these compounds in dust [1-8], and
one challenge confronted is improving the confidence in
proposed compound identifications, particularly when
authentic standards are not available. Here, we investigate
the use of a liquid chromatography-quadrupole time-of-flight
(QTof) MS combined with ion mobility spectrometry (IMS) to
provide further gas-phase characterization of xenobiotic
contaminants observed in two e-waste processing facility and
composite household dust samples. Specifically, IMS was
used here to obtain collision-cross section (CCS) values for
all ions, which represent the two-dimensional area of an ion’s
gas-phase conformation and is measured in units of A? [9].
CCS values were used as an identification point for numerous
compounds in this study. Further investigation in the use of
predictive modelling to support identifications in HRMS data-
independent acquisitions such as this was performed with two
modern, easy-to-use CCS prediction model platforms.

RESULTS AND DISCUSSION

METHODS

SAMPLE DESCRIPTION: Dust samples were collected from two
different e-waste processing facilities in Canada, described in [3] and
[10], and the composite household dust sample was collected from
various Canadian homes and described in [11]. Samples were
extracted through liquid extraction with dichloromethane and dried down
under N,. Extracts were reconstituted with 1:1 methanol: water for LC-
MS analysis.

LC CONDITIONS:

LC System: Waters ACQUITY I-Class (with isolator column)
Column: ACQUITY UPLC BEH C18 2.1 x 50 mm, 1.7 ym
Column Temp: 65 °C

Sample Temp: 4°C

Flow Rate: 0.450 mL/min.

Mobile Phase A: 2 mM ammonium acetate in 98: water:methanol
Mobile Phase B: 2 mM ammonium acetate in methanol

Total Run Time: 8.5 min.

Gradient: 90% A starting, then 90% A at 0.5 min. to 0% A at 5.10 min.,
held for 1.50 min. then return to 90% A at 6.70 min. for remainder of run

time.

IMS-MS CONDITIONS:

Instrument : Vion IMS QTof
lonization Mode: ESI"" (separate acquisitions)
Collision Energy (LE): 3eV

Collision Energy (HE ramp): 20-55 eV

Scan Time: 0.25 sec

Acquisition Range: 50-1000 m/z

Drift Gas: N,

Capillary: 1.0 kV (positive) and 0.5 kV (negative)
Source Temperature: 120°C

Source Offset: 80

Desolvation Temperature: 550°C

Cone Gas Flow:

Desolvation Gas Flow:

Lockmass:

Mass and CCS Calibrant:

50 L/hr

1000 L/hr

Leucine Enkephalin (656.2766/554.2620m/z)
Major Mix
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