QUANTIFYING THE LIPIDOME FOR RESPIRATORY DISEASE: A RAPID AND COMPREHENSIVE HILIC-BASED TARGETED APPROACH

THE SCIENCE OF WHAT'S POSSIBLE.®

RESULTS

<u>Giorgis Isaac¹</u>, Nyasha Munjoma², Lee A. Gethings² and Robert S. Plumb¹

¹ Waters Corporation, Milford, MA; ² Waters Corporation, Wilmslow, UK

HIGHLIGHTS

- Comprehensive and robust high-throughput HILICbased LC-MS/MS method with over 2000 MRMs.
- Highly specific MRM transitions based on the fatty acyl chain and headgroup fragment ions.
- Lipid class based separation reduces the number of stable isotope lipid standards (SILS) which results in significant cost saving.

INTRODUCTION

Respiratory linked conditions associated with chronic obstructive pulmonary disease (COPD), asthma, and infection are increasing with significant associated socio-economic costs.

A hydrophilic interaction chromatography (HILIC) based approach for the separation of lipids by class prior to MS analysis is a proven method of reducing identification ambiguity. An additional benefit of separating lipid species by class is that fewer stable isotope labelled (SIL) standards are required for quantification, conferring a cost saving.

Here we describe a comprehensive and high-throughput HILICbased LC-MS/MS method for the separation and quantitation of both polar and non-polar lipid classes (Figure 1); (www.waters.com/targetedomics).

RESULTS

Figure 3. Positive ion mode chromatogram representing HILIC separation of the SPLASH LIPIDOMIX[™] lipid standard mixture.

Figure 7. LipidQuan improves isobaric lipid species identification by using both fatty acyl and headgroup MRM transitions for confirmation. Example, PC (16:0p/22:6) and PC (18:2p/20:4) have precursor m/z 790.6 and can not be distinguished using only the head group transition (m/z 184.1).

Figure 1. General lipidomics workflow used in most research laboratories, with the LipidQuan workflow highlighted.

METHODS

SAMPLE PREPARATION

A simple sample preparation procedure was adopted using protein precipitation with a pre-cooled isopropanol (IPA) at 4 °C (1:5, plasma:IPA).

INSTRUMENT CONDITIONS

LC Conditions:

LC system:	ACQUITY UPLC I-Class with FTN or Fixed Loop
Column:	ACQUITY UPLC BEH Amide (2.1x100mm, 1.7 µm)
Column temp:	45°C; Injection volume: 2 μL
MP A:	95/5 ACN/Water (10 mM ammonium acetate)
MP B:	50/50 ACN/Water (10 mM ammonium acetate)
Gradient:	0.1% to 20.0% B for 2 minutes, then 20% to 80% B for 3 minutes followed by 3 minutes re-equilibration

MS Conditions:

Xevo TQ-XS	or Xevo TQ-S micro	
ESI (+/-);	Capillary voltage:	2.8kV (+)/1.9kV (-)
MRM		
120 °C;	Desolvation temp.:	500 °C
150 L/hr;	Desolvation flow:	1000 L/hr
	Xevo TQ-XS (ESI (+/-); MRM 120 °C; 150 L/hr;	Xevo TQ-XS or Xevo TQ-S micro ESI (+/-); Capillary voltage: MRM 120 °C; Desolvation temp.: 150 L/hr; Desolvation flow:

INFORMATICS

A LipidQuan Quanpedia method file that contains the LC conditions, MS method (with over 2000 MRM transition), and associated TargetLynx processing method (including retention times) was generated.

Column	LC-MS System	Samples	Lipid Standards
Acquity UPLC BEH			🦱 Avonti®

Figure 4. Average retention time (n=1500) of SPLASH LIPIDOMIX[™] lipid standard mixture spiked into NIST 1950 plasma with RSD's <2%.

Figure 5. Average retention time (n=1500) of SPLASH LIPIDOMIX[™] lipid standard mixture in IPA using five columns from different batches with RSD's <2%.

Figure 8. LipidQuan data from a COPD/Asthma study was statistically analysed using **(A)** SIMCA-P+ and **(B)** Metaboanalyst statistical packages via Symphony data pipeline to enable biological interpretations. (C) Hierarcjical clustering of the top 100 lipid species (ANOVA/t-test with FDR < 1%) highliting the average differential expression acroos the three groups. The box plots show example of altered lipid species on the different cohort samples.

CONCLUSION

- Streamlined and integrated lipidomics workflow (from sample preparation through to biological interpretations).
- Highly specific MRM transitions based on the fatty acyl chain fragments when applicable instead of the typical head group fragments to improve identification and specificity.
- Routine targeted quantification of common lipids in plasma and serum.
- Lipid class based separation reduces the number of stable isotope lipid standards (SILS) which results in significant cost saving.
- Fast data processing using TargetLynx or open source software such as Skyline.

Figure 2. LipidQuan instrumentation and LC-MS/MS conditions. The LipidQuan Quanpedia method file contains LC conditions, MS method with over 2000 MRM transitions and processing methods.

Figure 6. Example chromatogram of plasma samples analysed using Lipid-Quan platform. **(A)** Positive mode screen (with zoomed insert) and **(B)** Negative mode screen (with zoomed insert) of various lipid classes. Data visualization using SIMCA-P+ (Umetrics) or MetaboAnalyst.

Acknowledgements

The authors would like to thank Steve Lai (Waters) for help with method development as well as Will Thompson (Duke University) for advice and constructive comments.

References

- Munjoma, N., Isaac, G., Plumb, R., Gethings, L., (2019) Quantifying the Lipidome for a Respiratory Disease Study Using LipidQuan: A Rapid and Comrehensive Targeted Approach., Application Note (720006542EN).
- Isaac, G., Munjoma, N., Gethings, L., Plumb, R., (2018) LipidQuan for Comprehensive and High-Throughput HILIC-based LC-MS/MS Targeted Lipid Quantitation., Application Note (720006402EN).

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

©2017 Waters Corporation