Real-time, automated characterization of algal lipidome and metabolome using **Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry**

Synechocystis PCC6803

Nannochloropsis spp

Chlorella Sorokiniana

<u>Júlia Balog</u>^{1,2}, Richard Schäffer¹, Milán Szabó^{3,4}, Unnikrishnan Kuzhiumparambil⁴, Peter Ralph⁴, Steven Pringle⁵ and Zoltán Takáts² ¹Waters Research Center, Budapest, Hungary; ²Imperial College, London, United Kingdom, ³Biological Research Center, Szeged, Hungary; ⁴University Technology Sydney, Australia; ⁵Waters Corporation, Wilmslow, United Kingdom.

INTRODUCTION

- There is a need in the industry for a rapid, high throughput, automatic characterization method in order to speed up genetic engineering and production
- The rapid metabolic phenotyping of different algal species allows the real-time monitoring of different processes within the cells and the detection of molecules produced by the cells
- Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry (LA-REIMS) is a rapid and efficient method for profiling complex biological samples such as tissues, microbial samples or food products without the time consuming sample preparation steps
- In this study, we present an automated, fast and effective way to identify different algae based on their metabolic and lipidomic profile using LA-REIMS and a prototype homebuilt automated system.

Figure 1. Sample formats: (i) cultured on plates; (ii) concentrated liquid.

- Chlorella sorokiniana normal media and nitrate negative media pellets
- Nannochloropsis sp. normal media and nitrate negative media pellets
- Synechocystis PCC6803 in liquid form
 - **AUTOMATED LASER-REIMS WELL PLATE READER**
- Sample with laser directly from well plate
- Generate aerosol from liquid, pellets and solid samples and transfer generated aerosol into mass spectrometer
- Scan whole well plate automatically including start/stop MS acquisition
- Control movement, laser and acquisition parameters.

Figure 2. Well plate reader lab prototype.

M.S. is supported by the grants of the Hungarian Academy of Sciences, MTA Premium Postdoctoral Research Program (PREMIUM-2017-38) and the Hungarian National Research, Development and Innovation Office (FK 128977)

TO DOWNLOAD A COPY OF THIS POSTER, VISIT WWW.WATERS.COM/POSTERS

AIMS

- To evaluate if we could acquire a metabolomic and lipidomic profile from algae using Laser-Assisted **REIMS** and an automated system for plates and pellets
- To identify specific lipids using the same LA-REIMS method
- To evaluate if we can spot differences between the lipidomic profiles of algae cultured under environmental stress

• We can generate a complex lipidomic profile within seconds from a sample

could be iden	tified with LA-	Measured mass	Theoretical mass	Species	Ion	Found in, abundant in
d		697.482	697.4814	PA(18:1/18:2) PE(16:1/18:1)	M-H M-NH4	Nanno
iple lipids wit sed media dou	h odd fatty acıd red with	719.4863	719.4869	PG(16:1/16:0)	M-H	Chlorella, Synecho, Nanno
nsure there is no bacterial		721.5018	721.5025	PG(16:0/16:0)	M-H	Chlorella, Synecho
		733.504	733.5025	PG(17:1/16:0)	M-H	Chlorella
		735.5172	735.5182	PG(16:0/17:0)	M-H	Chlorella
Synechocystis PCC6803 Nitrate positive, m/z = 745.5		741.472	741.4712	PG(18:3/16:1)	M-H	Chlorella
		743.4875	743.4869	PG(16:0/18:3)	M-H	Chlorella, Synecho
		745.5025	745.5025	PG(16:0/18:2)	M-H	Chlorella, Synecho
745.51 4 264 19 391.23 415 23 489.26 507 27 576.25 509 22 620.21 571 47 744 50		747.5167	747.5181	PG(16:0/18:1)	M-H	Chlorella, Synecho
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		759.5161	759.5182	PG(17:0/18:2)	M-H	Chlorella, Nanno
		765.477	765.4712	PG(18:3/18:3)	M-H	Nanno
		767.489	767.4869	PG(18:3/18:2)	M-H	Nanno
		787.5128	787.549	PG(18:1/19:1)	M-H	Synecho, Nanno
25 315.25 391.23 415.23 489.26 509.29 569.21 611.18 671.47 744.49		791.5008	791.4985	SQDG(16:0/16:1)	M-H	Synecho, Nanno
350 400 450 500 497.2 483.27	²⁹ Chlorella Sorokiniana	793.5125	793.5141	SQDG(16:0/16:0)	M-H	Synecho, Chlorella, Nanno
403.27	Nitrate negative, m/z = 733.5	833.5182	833.5186	PI(16:0/18:2)	M-H	Chlorella
	733 51	847.5268	847.5342	PI(17:0/18:2)	M-H	Chlorella
²³ 321.25 391.23,405.23 479.28 00 350 400 450 50 ca of different spe	523.18 555.28 577.28 605.35 697.63 733.43 733.66 00 550 600 650 700 750	Table. 2. Pho	spholipids iden	tified with LA-R	EIMS using N	ASMS and

• Identifying specific lipids with LA-REIMS method is feasible using exact mass and MSMS measurements

CONCLUSIONS

· Maters

THE SCIENCE OF WHAT'S POSSIBLE.®

Fig. 12. Differences due to environmental perturbations. 3D PCA and adjacent loading plot of PC1 showing the differences due to Nitrogen stress, lipids identified with MSMS underlying the differences, Box plots of two selected lipids.

> • A POC study on the effect of Nitrogen environmental stress has showed that there are multiple changes in the lipidome – with the reduction of nitrate in the media, the saturation of the fatty acid side chains increases