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INTRODUCTION 

Obesity is a growing problem for human health 
which has reached epidemic proportions 
affecting over 500 million people worldwide. 
The condition arises due to abnormal or 
excessive fat accumulation that can lead to 
further health implications such as type 2 
diabetes, heart and liver disease and potential 

links to various forms of cancer. Previous 
studies involving the treatment of mice with 
glucosylceramide inhibitors such as MZ-21 have 
shown reduced blood glucose levels and 
increased insulin sensitivity.1 In order to gain a 
greater understanding of the role that such 
inhibitors may contribute within obese subjects, 
a multi-omic study involving protein and lipid 
analysis have been conducted using a label-free 
LC-HDMSE (LC-DIA-IM-MS) approach, providing 
qualitative and quantitative information from a 
single experiment. The curated datasets were 
then interrogated using pathway analysis tools, 
indicating that physiological processes such as 
hepatic system development, inflammatory 
response and carbohydrate metabolism are 

influenced following MZ-21 treatment. 
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Figure 6. Hierarchical cluster analysis representing regulated 

proteins with a maximum fold change >2 and ANOVA P-value 
≤0.05. 

CONCLUSIONS 

 

 A multi-omic study using DIA, label-free strategies 

has been applied to the study of obese mice which 

have been treated with a glucosylceramide inhibitor.  

 PCA analysis shows both protein and lipid data to be 

complimentary.  

 Over 1200 proteins were identified with 30% of the 

data showing differential expression. 

 Phosphatidylcholines, sphingomyelins, triglycerides 

and lysophosphatidylcholines are identified as 
contributing towards the lipid variance. 

 Carbohydrate and lipid metabolism were identified as 

significant pathways. Diseases and functions such as 

inflammatory responses and diabetes are examples 
shown as mapping to lipid metabolism.  

Figure 2. Retention and drift time principle ion mobility enabled 

data-independent analysis (IM-DIA-MS). 

Figure 3. Unsupervised PCA scores plot for proteomic (upper) 

and lipidomic (lower). Inhibitor treated subjects are high-
lighted in red whilst controls are black. In both cases the PCA 

is complimentary with good separation between groups and 
tight clustering over technical replicates.  

RESULTS 

Small amounts of the purified liver extracts were analyzed to 

identify, quantify and investigate the proteomic and lipidomic 

variance between control and inhibitor treated subjects. 
PCA was used to identify significant changes between control 

and inhibitor treated samples, of which an example is shown in 
Figure 3. Similar clustering patterns are observed for both the 

protein and lipid data. Over 1200 proteins were identified with 
30% differentially expressed. An overview of the experimental 

metrics can be generated from the Progenesis QI informatics. 
The QC Metrics for the proteomic data is provided in Figure 4. 

Proteins exhibiting expression changes with high statistical sig-
nificance can be readily identified from the volcano plot (Figure 

5). 

Figure 1. Experimental design study for proteins and lipids ex-

tracted from liver tissue. 

METHODS 

Sample preparation 

Proteins and lipids were extracted from liver tissue, which 
originated from 3 control and 3 treated (MZ-21 inhibitor) 

obese mice. The protein extracts were prepared with 1% 
RapiGest SF prior to reduction, alkylation and overnight 

digestion with trypsin.  
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Figure 8. Identified functions and disorders from the pathway 

analysis based on curated protein and lipid identifications. Sta-
tistical significance is provided by means of a Fisher’s Exact 

Test with the threshold set at 1%.  

Figure 9. Ingenuity pathway analysis resulting from the combi-

nation of curated protein and lipid datasets. These include up 
(red) and down (green) regulated functions with the intensities 

depicting fold change variations. Colored connectors highlight 
associations with diseases such as diabetes (purple), lipid oxi-

dation (blue), fatty acid metabolism (orange) and inflammation 
(red). 

Unsupervised hierarchial clustering based on a curated list of 

protein identifications (Figure 6) highlights grouping at the 
technical level and secondary grouping at the sample level with 

regulation probability.  
 

The lipidomic workflow results are summarized in Figure 7. 
Using a contrasting loadings plot, significant lipid features can 

be found at the extremes and are shaded in blue. These 
features can subsequently be database searched with 

Progenesis QI. Example lipids which are found to contribute 
most significantly to the variance are provided in the 

corresponding table. 
 

 

A curated list of proteins and lipids were combined and interro-

gated for pathway analysis. Pathways were limited to species 
(mus musculus) and liver tissue. Additional filtering was based 

on number of components mapped and associated ANOVA P-
values. Figure 8 illustrates diseases and biological processes 

identified, whilst Figure 9 represents the lipid metabolism net-
work. 
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Figure 5. Volcano plot of protein identifications based on ln fold 

change (x-axis) and –log ANOVA P (y-axis) allows highly prob-
able, differentially expressed proteins to be readily identified 

for control (grey) and treated (blue) subjects. 

Bioinformatics 

The LC-MS peptide data were processed and searched using 

Progenesis QI for Proteomics, whilst the lipid data was proc-
essed and searched with Progenesis QI. In both cases normal-

ized label-free quantification was achieved from the Progenesis 
software.  

 
Additional statistical analysis was conducted with EZInfo.  

Pathway and network analysis was also performed with Inge-
nuity Pathway Analysis (IPA). 
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Figure 7. Resulting S-plot from OPLS-DA analysis of control 

versus treated subjects. Features contributing to the greatest 
variance are shaded in blue with representative identifications 

resulting from the shaded areas listed in the accompanying  
table. Identifications were filtered on the basis of mass accu-

racy (<3ppm), ANOVA p-value (≤0.00005) and fold change 
(>2). The main lipid classes identified include lysophosphati-

dylcholine (LPC), phosphatidylcholine (PC), sphingomyelin 
(SM) and triglyceride (TG).   

Lipids were extracted by homogenizing liver tissue in chloro-

form-methanol (2:1, v/v) and extracted according to the Bligh 
and Dyer method.2 The extracts were centrifuged for phase 

separation and the lower fraction collected for LC-MS analysis. 
An overview of the experimental and analytical workflow is 

provided in Figure 1. 
 

LC-MS conditions 

Label-free LC-MS was used for qualitative and quantitative 
peptide analyses. Experiments were conducted using a 90 min 

gradient from 5 to 40% acetonitrile (0.1% formic acid) at 300 

nL/min using a nanoACQUITY system and a HSS 1.8 µm C18 
reversed phase 75 µm x 15 cm nanoscale LC column. 

 
For lipid identification, the LC-MS experiments consisted of a 

20 min gradient from 3 to 40% isopropanol:methanol (10mM 
ammonium formate) at 500 µL/min using a ACQUITY UPLC 

system. Here, a BEH 1.7 µm C8 reversed phase 2.1 x 10 cm 
LC column was used.  

 
Proteomic data acquisition utilized data independent analysis 

(DIA) with a nanoscale LC nanoACQUITY system directly inter-
faced to a hybrid IMS-oaToF Synapt G2-Si. Lipidomic measure-

ments were conducted using a Xevo G2-S mass spectrometer, 
operating in DIA. Ion mobility (IM) was used in conjunction 

with the proteomic acquisition schema, illustrated in Figure 2. 
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ControlTreated
Increasing Fold Change

m/z Identification ANOVA (P) 

568.3397 LPC 22:6 5.21E-06 

706.5401 PC 30:0 8.44E-07 

759.6359 SM(d18:1/20:0) 2.05E-08 

785.6521 SM(d18:1/22:1) 3.75E-06 

787.6682 SM(d18:1/22:0) 6.60E-08 

811.6658 SM(d18:0/22:0) 3.96E-06 

813.6836 SM(d18:1/24:1(15Z)) 8.25E-08 

836.7703 TG(49:1) 1.84E-08 

896.7703 TG(18:1/18:2/18:3) 9.72E-11 

912.8012 TG(55:5) 4.14E-07 

1590.1432 PC 36:3 4.17E-07 

 

 

Figure 4. QC Metrics overview of the proteomic data resulting 

from Progenesis QI for Proteomics. 


